Acceleration of particles up to PeV energies at the Galactic Centre

Stefano Gabici (APC, Paris) Felix Aharonian, Emmanuel Moulin, Aion Viana on behalf of the HESS collaboration

Outline of the talk

- brief introduction to galactic Cosmic Rays
- the link with gamma-ray astronomy
- the HESS array of Cherenkov telescopes
- the Galactic Centre as an accelerator of cosmic rays up to PeV energies
- Conclusions

The origin of CRs: energy requirement

The origin of CRs: energy requirement

The origin of CRs: Galactic sources

The origin of CRs: Galactic sources

The origin of CRs: Galactic sources

B-field amplification

CR escape from SNRs -> current driven (and self regulating!) plasma instability

Cosmic ray sources: why is it so difficult?

We cannot do CR Astronomy.

Need for indirect identification of CR sources.

Cosmic ray sources: why is it so difficult?

We cannot do CR Astronomy.

Need for indirect identification of CR sources.

SNRs in y-rays: hadronc or leptonic?

possible interpretations:

- inverse Compton scattering off CMB (Ellison+, Fermi Coll., ...)
- proton-proton interactions (Zirakashvili&Aharonian, Inoue+, SG & Aharonian, ...)

The gamma-ray sky: GeV domain The FERMI sky

Fermi bubbles

Signature of past activity of the SMBH

Fermi data reveal giant gamma-ray bubbles

Fermi bubbles

Signature of past activity of the SMBH

Fermi data reveal giant gamma-ray bubbles

H.E.S.S. TELESCOPES

The Milky Way observed with

The H.E.S.S. II telescope array

- Phase I
 - 4 telescopes (Ø 12 m, 107 m²)
 - 5° FoV
 - 960 PMTs / camera
 - E_{min}(zenith) ~ 100 GeV
 - Sterescopic reconstruction
 - Observations ~1000 h / year
 - Source position: ~10 arcsec

H.E.S.S.

Phase II

- + 5th telescope (Ø 28 m, 600 m²)
- 3.5° FoV
- 2048 PMTs
- E_{min}(zenith) ~ 20 GeV

slide credit: Ryan Chaves

Observational signature

p-p interactions ->
$$E^p_{max} \approx 1 \text{ PeV} \longrightarrow E^\gamma_{max} \approx 100 \text{ TeV}$$

Observational signature

unattenuated γ -ray spectrum extending to the multi-TeV domain

p-p interactions ->
$$E^p_{max} \approx 1 \text{ PeV} \longrightarrow E^{\gamma}_{max} \approx 100 \text{ TeV}$$

Observational signature

unattenuated γ -ray spectrum extending to the multi-TeV domain

p-p interactions ->
$$E^p_{max} \approx 1 \text{ PeV} \longrightarrow E^{\gamma}_{max} \approx 100 \text{ TeV}$$

Observational signature

unattenuated γ -ray spectrum extending to the multi-TeV domain

p-p interactions ->
$$E^p_{max} \approx 1 \text{ PeV} \longrightarrow E^{\gamma}_{max} \approx 100 \text{ TeV}$$

H.E.S.S. Coll. 2006

color scale -> γ-rays contours -> gas (CS)

Where is the source?

Where is the source?

Where is the source?

H.E.S.S. Coll. 2016

H.E.S.S. Coll. 2016

H.E.S.S. Coll. 2016

H.E.S.S. Coll. 2016

multi-source scenarios require excessive fine-tuning/unrealistic number of sources

BH activity, cosmic rays, neutrinos

the GC activity highly variable (Ponti+2013) -> what if the CR acceleration efficiency was larger in the past?

BH activity, cosmic rays, neutrinos

Conclusions

- first detection of a proton PeVatron in our Galaxy!
- the first PeVatron detected is not, as one might have expected, a SNR, but it
 - is the Galactic Centre
- plausible accelerator: SMBH
- If it was more active in the past, the SMBH might compete with SNRs as a dominant source of galactic CRs
- might also account for the isotropic flux of neutrinos recently detected by

IceCube