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long standing issue: 
can SNRs accelerate 

protons up to the 
knee?

~3 PeV
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Figure 4. Maximum energy as a function of time for the evolution of a SNR in various environments. Left: The black, red, and yellow
curves indicate E

max

for a CSM created by wind velocities of 4.7, 15, and 1000 km s�1 respectively, and a mass loss rate of Ṁ = 10�5 M�
in all three cases. Right: The black and red curve indicate E

max

for an ISM with a number density of 0.85 and 0.05 cm�3 respectively.
The dashed line shows the analytical solution given by Eq. 4, using ln(E

max

/m
p

c2) = 14, whereas the solid line shows the numerically
integrated solution for the maximum energy that takes into time dependence of the shock velocity. The steep drop is where the NRH
instability stops being e↵ective and where other instabilities will be required to grow the magnetic field fluctuations.

Figure 5. Shock velocity as a function of time for the evolution of a SNR in various environments. Left: CSM for various values of the
wind velocity, as in Fig. 4. The solid lines indicate the shock velocity and the dotted lines give the number density just upstream of the
shock as a function of time. Right: evolution of the shock velocity for the two di↵erent values for the ISM number density.

evolution, and especially in the core-collapse SNe in a dense
RSG wind, which are representative for the early stages of
most type II SNe. However, with our assumed model param-
eters we get to about a PeV but not to much beyond, and
only for SNRs younger than a few decades. Potentially, if a
proper description for the magnetic field around a massive
star is taken into account, this may shift the numbers.

There are a couple of ways to increase the cosmic ray
energy compared with the current analysis. Firstly, some
change in E

max

may be gained by adjusting the explosion
parameters: mass and energy of the ejecta. Pushing the mass
to an extreme low and the energy to a high will increase
the maximum cosmic ray energy some – by virtue of the
higher shock velocity – depending on the density of the en-
vironment. Secondly, the energy of the cosmic rays may be

increased by the inclusion of higher Z elements, as was also
argued by Ptuskin et al. (2010). For example, if the wind
were dominated by helium rather than protons, the energy
would increase twofold. Observations of the cosmic rays seem
to indicate that the mean mass of the cosmic rays seems to
go up between several 100s of TeV and 10 PeV (Kampert
& Unger 2012; IceCube Collaboration et al. 2012), which is
very interesting in light of these results. The systematic un-
certainties are quite large and the interpretation model de-
pendent, which allows for a wide range of energies at which
the composition might change. However, both of these meth-
ods to increase the cosmic ray energy are mostly applicable
to the case we describe for a WR wind – in a tenuous envi-
ronment the higher shock velocity survives longer, and the
dominance of helium versus hydrogen may be expected. Be-
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SNRs in γ-rays: 
hadronc or leptonic?

RXJ1713 ~1600 yr

inverse Compton scattering off 
CMB (Ellison+, Fermi Coll., …) 
proton-proton interactions 
(Zirakashvili&Aharonian, Inoue+, 
SG & Aharonian, …)

possible interpretations:



The gamma-ray sky: GeV domain
The FERMI sky

Diffuse emission (mainly hadronic)
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The Milky Way observed with H.E.S.S. - TeVPA 2016 2 2
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2004

2012 
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h.E.S.S. Telescopes 

slide credit: Axel Donath
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The H.E.S.S. II telescope array

 Phase I

 4 telescopes (Ø 12 m, 107 m2)

 5° FoV 

 960 PMTs / camera

 Emin(zenith) ~ 100 GeV

 Sterescopic reconstruction

 Observations ~1000 h / year

 Source position: ~10 arcsec

 Phase II

 + 5th telescope (Ø 28 m, 600 m2)

 3.5° FoV

 2048 PMTs

 Emin(zenith) ~ 20 GeV

slide credit: Ryan Chaves
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the first PeVatron is not 
a SNR but is located in 

the Galactic centre!

diffuse emission from the GC

no cutoff!

a cutoff @ … deviates from data @ 
2.9 PeV    68% 
0.6 PeV    90% 
0.4 PeV    95%
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The GC ridge as seen 10 years ago
H.E.S.S. Coll. 2006

color scale -> γ-rays 
contours -> gas (CS)

histogram -> γ-rays 
red -> gas (CS)

55 h

quite good correlation 
except for the edges 

of the ridge -> 
hadronic emission

morphology of gas and γ-rays -> spatial distribution of CR

source

CRs

Sgr A*
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Where is the source?

CR spatial distribution many sources 
-> any distribution

Sgr A*
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The source is at the GC

226 h 1/R profile -> source located in the inner ~10 pc!

multi-source scenarios require excessive fine-tuning/unrealistic number of sources

H.E.S.S. Coll. 2016

accelerator must be active for:

�t > R2

6⇥D ⇠ 2⇥ 103
⇣

D
1030cm2/s

⌘�1
yr
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Supermassive black hole as a PeVatron
Sgr A* is the best bet candidate source of PeV cosmic rays

diffuse

Sgr A*

~10 TeV cutoff -> inconsistency? no…

emission could be unrelated 
time dependent effect 
γγ-absorption w. IR photons? (Celli+ 2016)

Wp ⇠ 1049erg

gas mass

Q̇p ⇠ 4⇥ 1037
⇣

D
1030cm2/s

⌘
erg/s

1/R profile
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to explain all CRs >10 TeV we need
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LCR ⇡ 1039 erg/s

the GC activity highly variable 
(Ponti+2013) -> what if the CR 

acceleration efficiency was 
larger in the past?

BH activity, cosmic rays, neutrinos
spe
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CR bursts from GC 
Ptuskin & Khazan (1981) 
see also Fujita+ 2016 

CR in Gal. breeze 
Taylor & Giacinti 2016

IceCube neutrinos

Taylor, SG, Aharonian 2014



Conclusions

first detection of a proton PeVatron in our Galaxy! 

the first PeVatron detected is not, as one might have expected, a SNR, but it 

is the Galactic Centre 

plausible accelerator: SMBH 

if it was more active in the past, the SMBH might compete with SNRs as a 

dominant source of galactic CRs 

might also account for the isotropic flux of neutrinos recently detected by 

IceCube


