

Black Hole Astrophysics with the Cherenkov Telescope Array

Susumu Inoue (RIKEN) for the CTA Consortium

1. Sheahr

Outline

- The Cherenkov Telescope Array
- Active Galactic Nuclei
- Gamma-Ray Bursts
- Microquasars, Other Transients
- Extragalactic Survey
- Summary

Figures from "Science with CTA" document (to be published soon) unless noted otherwise

The Cherenkov Telescope Array

LSTs: 4 N, 4 S 20 - 200 GeV 4.5 deg FoV Array of state-of-the-art IACTs
Combination of large-, middle-, small-sized telescopes for wide energy coverage
2 sites in N & S for all-sky coverage
Open observatory for the community

(some fraction of time allocated for Consortium Key Science Projects)

MSTs: 25(+24)S, 15 N 100 GeV - 10 TeV 8 deg FoV

SSTs: 70 S few TeV - 300 TeV 9-10 deg FoV

adapted from W. Hofmann, S. Vercellone

CTA vs current IACTs

from W. Hofmann

adapted from W. Hofmann

CTA Sensitivity (steady sources)

Multi-wavelength/messenger Synergy

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
	Ow Frequency Radio				S	Science Veri	fication —> l	User Operati	on		
				•		•		•			
	N		MWA	(ungrade)			:	:	:	:	
	VLITE on J	VLA	>	· (~2018? LO	BO)		•	•	•	•	
Mid-Hi Fi	requency F	Radio							:		
ASKA	P		•	•	•	<u> </u>					
Kat7 -	-> MeerKAT					\neg					
JVLA											
eMerli	n										<u>)</u>
)		SKA	1&2 (Lo/Mi	id)			
(sub)Mill	imeter Rac	oit									
ALMA											
	<u>EHT</u>	(protot	ype —> full o	ops)	<u></u>			i	<u>.</u>		
Optical 1	Fransient F	actories/T	ransient F	inders							
iPalom	ar Transient	Factory	<u>-> (~2017</u>) Zwicky TF			T (buildun)	to full survey i	mode)	<u>.</u>	;
PanST	ARRS1 -> F	anSTARRS2							inouc)		
			ckGEM (Mee	erlicht single	dish prototyp	pe in 2016))				
Optical/II	R Large Fa	cilities					:				: :
VLT &	: Keck										
(HST	•	·			JWST			1	÷		WFIRST
X-ray							—(<u>GMT</u>	eELT (full ope	eration 2024)	& TMT (time	line less clear)?
SWIF	Г (incl. UV/ор	otical)		•	•		•	•	·	•	
	& Chandra										
	AR)	:		XIPE?
		ASTROSAT					!	1			ATHENA (2028)
			CNICER/HZ		:	:	:)			
Gamma	rav				:	:	SVOM	(incl. optical g	<mark>ground</mark> elemer	nts)	
	DAI	:	:	:	:	:					
FFRM							j.				
	HAWC	—> Outrigg	er array in 20	017				,	•	•	Gamma400
Gray Wa	VAS	DAMPI	Ξ Į				_				(2025+)
	Advanc	ced LIGO + A	Advanced VI	RGO (2016)		(-upgrade	to include L	IGO India—)			Einstein Tel.?
Neutrino	s							:			
		IceCu	be (SINCE 2	011)						1	ceCube-Gen2?)⇒
ANTAR	ES		(KM3NE	Т-1		KM3NF	CT-2 (ARCA)				KM3NET-3

CTA Key Science Projects

- Dark Matter Programme
- Galactic Centre
- Galactic Plane Survey
- Large Magellanic Cloud Survey
- Extragalactic Survey
- Transients
- Cosmic Ray PeVatrons
- Star Forming Systems
- Active Galactic Nuclei
- Clusters of Galaxies
- Non-Gamma-ray Science

Details in document "Science with CTA" to be published on arXiv

- Physics of relativistic jets from supermassive BHs
 - Mechanisms: emission, particle acceleration, energy dissipation, jet formation
 - Demography: origin of diversity, search for new classes
- Tools to probe the Universe
 - Extragalactic background light (star formation history, etc)
 - Intergalactic magnetic fields
- Tests of UHECR origin, fundamental physics Search for signatures of:
 - Accelerated hadrons
 - Lorentz invariance violation, Axion-like particles

Clarify physics of emission, particle acceleration
 Test UHECR origin high S/N spectra + variability

Clarify physics of emission, particle accel., energy dissipation
 Test LIV high S/N light curves

- Probe evolution of optical/IR EBL via γγ spectral attenuation global view of star/galaxy formation & evolution high S/N spectra for large sample with different z source

• Physics of GRBs

- Prompt: mechanism, jet properties, central engine (NS or BH?)
- Early afterglow: mechanism (plateau phase), particle acceleration, B field generation
- Tools to probe the Universe
 - Extragalactic background light (deeper than AGN)
 - Intergalactic magnetic fields
- Tests of UHECR origin, fundamental physics Search for signatures of:
 - Accelerated hadrons
 - Lorentz invariance violation

- Probe high-z UV EBL via γγ spectral attenuation high S/N spectra CTA simulation

- Probe high-z UV EBL via γγ spectral attenuation high S/N spectra CTA simulation

expected total detection rate: ~1-2 /yr/site ~<15% prompt rest afterglow Kakuwa+ 12

Gilmore+ 13 SI+ 13

Microquasars

- Physics of relativistic jets from stellar mass BHs
 - Mechanisms: emission, particle acceleration, energy dissipation, jet formation
 - + connection with physics of accretion

Other Transients

Follow-up of Alerts:

- High-Energy Neutrinos
- Gravitational Waves
- X-ray/Optical Transients
 - Tidal Disruption Events
 - Supernova Shock Breakout Events

Radio Transients

- Fast Radio Bursts

. . .

Serendipitous Transients

via real time analysis, alerts with ~30 sec latency -> CTA as transient factory

Extragalactic Survey

Unbiased survey for 1/4 sky (~ 10^4 deg²) to flux limit ~5mCrab

covers Virgo, Coma, Cen A, North Fermi Bubble

Extragalactic Survey

Unbiased survey for 1/4 sky (~ 10^4 deg²) to flux limit ~5mCrab

Extragalactic Survey

Unbiased survey for 1/4 sky (~ 10^4 deg²) to flux limit ~5mCrab

Extragalactic Survey: Divergent Pointing?

Szanecki+ 2015 Wider FoV at expense of angular/ energy resolution

300

250

150

100

50

cta

Preliminary studies: point source survey efficiency comparable? -> possibly interesting for commensal unbiased transient survey

Summary: CTA

- New ground-based gamma-ray observatory
 - Open to the community
 - All-sky, high-sensitivity, wide-band (20 GeV 300 TeV)
 - Rapid follow-up + rapid alerts for transients
 - Strong multi-wavelength/messenger synergy with concurrent projects
- Powerful tool for black hole astrophysics
 - New perspectives on physics of AGN, GRBs, µquasars, etc
 - New approaches to observational cosmology, test of fundamental physics, etc
 - High-quality spectra + light curves for individual objects
 - Large survey programs for population studies, new discovery space

Backup slides

Baseline Array Layout

Telescope Characteristics

Telescope	Large	Mec	lium	Small			
	LST	MST	SCT	SST-1M	ASTRI SST-2M	GCT SST-2M	
Number North array	4	15	TBD				
Number South array	4	25	TBD	70			
Optics							
Optics layout	Parabolic mirror	Davies-Cotton	Schwarzschild- Couder	Davies-Cotton	Schwarzschild- Couder	Schwarzschild- Couder	
Primary mirror diameter (m)	23	13.8	9.7	4	4.3	4	
Secondary mirror diameter (m)	-	-	5.4	-	1.8	2	
Eff. mirror area after shadowing (m ²)	368	88	40	7.4	6	6	
Focal length (m)	28	16	5.6	5.6	2.15	2.28	
Focal plane instrumentation							
Photo sensor	ΡΜΤ	ΡΜΤ	silicon	silicon	silicon	silicon	
Pixel size (degr.), shape	0.10 <i>,</i> hex.	0.18 <i>,</i> hex.	0.07, square	0.24 <i>,</i> hex.	0.17, square	0.15-0.2, square	
Field of view (degr.)	4.5	7.7/8.0	8.0	9.1	9.6	8.5 - 9.2	
Number of pixels	1855	1764/1855	11328	1296	1984	2048	
Signal sampling rate	GHz	250 MHz / GHz	GHz	250 MHz	S&H	GHz	
Structure							
Mount	alz-az, on circular rail	alt-az positioner	alt-az positioner	alt-az positioner	alt-az positioner	alt-az positioner	
Structural material	CFRP / steel	steel	steel	steel	steel	steel	
Weight (full telescope, tons)	100	85	~85	9	15	8	
Max. time for repositioning (s)	20	90	90	60	80	60	

from W. Hofmann

Large Sized Telescope

Carbon fibre structure

- 1.5 m glass-on-aluminum honeycomb mirror facets
- Active mirror alignment using CCDs on each facets
- Pointing in 20 s to any sky
- La Palma prototype operational by end of 2017

from W. Hofmann

Middle Sized Telescopes

adapted from W. Hofmann

Small Sized Telescopes

