Neutrino Astronomy with IceCube

Kevin Meagher for the IceCube Collaboration

Université libre de Bruxelles

September 16, 2016

Cosmic Ray Astrophysics

Cosmic Rays

a century-old mystery

Lower energy cosmic rays: identified with solar and galactic (e.g. SN remnant) emission

Highest energy cosmic rays: sources **not yet identified**

Cosmic rays — p or heavier nuclei — are accelerated in violent astrophysical objects. Then e.g.,

$$p + \gamma \to \Delta^{+} \to \begin{cases} p + \pi^{0} \to p + 2\gamma & (2/3 \text{ of all cases}) \\ n + \pi^{+} \to n + e^{+} + \nu_{\mu} + \nu_{e} + \bar{\nu}_{\mu} & (1/3 \text{ of all cases}) \end{cases}$$

Photons attenuated by the CMB

Cosmic rays / charged particles travel in curved paths due to magnetic fields

Neutrinos travel long distances largely unencumbered by intervening matter

Cosmic Rays

ULB ICECUBE

propagation

The IceCube Neutrino Observatory

The IceCube Neutrino Observatory

1.5-2.5 km deep in the South Pole glacier

5160 PMTs arranged on 86 strings 1 km³ instrumented volume

Constructed 2005-2010

Neutrino Detection

interactions and detector signatures

Cosmic Ray Muon Background

ULB LOCOUR

two approaches to neutrino selection

Classic ν_{μ} strategy:

- Earth acts as neutrino filter
- Well-reconstructed up-going tracks must be neutrinos

ightarrow North sky and u_{μ} only

Cosmic Ray Muon Background

ULB

Classic ν_{μ} strategy:

Earth acts as neutrino filter

two approaches to neutrino selection

■ Well-reconstructed up-going tracks must be neutrinos

Active veto to select starting events:

 \rightarrow North sky and ν_{μ} only

→ Reduced effective volume. but full sky and all flavor

Cosmic Ray Muon Background

ULB IDECUBE

muon and neutrino backgrounds

Background and signal differ in spectrum and angular distribution

Astrophysical Neutrino Flux

Appearance of PeV neutrinos

first hint of an astrophysical flux

Two PeV neutrinos found

2.8 σ excess over background [PRL 111, 021103 (2013)]

 $\sim 1.1\, \text{PeV}$

Veto methods were implemented to probe lower energies.

High Energy Starting Events

ULB IDECUBE

results from four years of data

Search for contained, very bright events

Sensitive to all flavors above $\sim 60 \, \text{TeV}$

High Energy Starting Events

ULB ICECUBE

results from four years of data

Search for contained, very bright events

Sensitive to all flavors above $\sim 60\,\text{TeV}$

53 events in four years

Deposited EM-Equivalent Energy in Detector (TeV)

[ICRC2015 / PoS(ICRC2015)1081]

High Energy Starting Events

results from four years of data

Search for **contained**, **very bright** events

Sensitive to all flavors above $\sim 60 \, \text{TeV}$

53 events in four years

6.5 σ above background from maximum likelihood forward-folding

Best fit spectrum:

$$\begin{split} \Phi_{\nu}(E) &= \Phi_0 \cdot (E/100\,\text{TeV})^{-2.58\pm0.25} \\ \Phi_0 &\simeq 2.2 \times 10^{-18}/\text{GeV/cm}^2/\text{s/sr} \end{split}$$

[ICRC2015 / PoS(ICRC2015)1081]

Medium Energy Starting Events

probing lower energies with an adaptive veto

Active volume decreases with deposited energy — threshold reduced to $\sim 1\,\text{TeV}$

Medium Energy Starting Events

results from two years of data

Astrophysical excess down to $\sim 10\,\text{TeV}$

Fit consistent with high energy search but errors are smaller

Model disagreement at 30 TeV **not significant** (p = 5%)

[PRD 91, 022001 (2015)]

Astrophysical Muon Neutrinos

results from six vears of data

Accept incoming tracks \rightarrow larger effective area

- lacktriangle Restricts search to **North sky** u_{μ}
- Probes higher energies

Best fit spectrum:

$$\begin{split} \Phi_{\nu}(E) &= \Phi_0 \cdot (E/100\,\text{TeV})^{-2.08\pm0.13} \\ \Phi_0 &= 0.82^{+0.30}_{-0.26} \times 10^{-18}/\text{GeV/cm}^2/\text{s/sr} \end{split}$$

[ICRC2015 / PoS(ICRC2015)1079]

Astrophysical Flavor Ratio

ULB ICECUBE

constraining source emission with an IceCube global fit

Astrophysical spectrum measured by several analyses

- Some are partially correlated
- Global fit benefits from best statistics
- Tension may come from different energy ranges of the analysis

[ApJ 809, 98 (2015)]

Astrophysical Flavor Ratio

ULB ICECUBE

constraining source emission with an IceCube global fit

Astrophysical spectrum measured by several analyses

- Some are partially correlated
- Global fit benefits from best statistics
- Tension may come from different energy ranges of the analysis

Some sensitivity to ν_e : ν_μ : ν_τ ratio at source

• n-decay dominance excluded at 3.6σ

[ApJ 809, 98 (2015)]

Searching for Sources

Point Source Analysis

search for clustering with 6 years of muon tracks

Standard skymap dominated by atm. ν in the North and atm. μ in the South

■ North: p = 44%

■ South: p = 39%

Point Source Analysis

search for clustering with 6 years of muon tracks

Standard skymap dominated by atm. ν in the North and atm. μ in the South

■ North: p = 44%

■ South: p = 39%

Excess of hot spots?

■ North: p = 42%

■ South: p = 39%

■ Galactic Plane $\pm 15^{\circ}$: p = 57%

[ICRC2015 / PoS(ICRC2015)1047 (6 year results)]

searches for clustering of starting events

Starting events \gtrsim 60 TeV (4yr)

p = 58%

ULB ICECUBE

searches for clustering of starting events

Starting events $\gtrsim 60 \, \text{TeV} \, (4\text{yr})$

p = 58%

Contained cascades $\gtrsim 1 \, \text{TeV} \, (2\text{yr})$

p = 52%

ULB ICECUBE

searches for clustering of starting events

Starting events \gtrsim 60 TeV (4yr)

p = 58%

Contained cascades $\gtrsim 1 \text{ TeV } (2\text{yr})$

p = 52%

Strong cascade sensitivity in South

ULB ICECUBE

searches for clustering of starting events

Starting events \gtrsim 60 TeV (4yr)

p = 58%

Contained cascades $\gtrsim 1 \, \text{TeV} \, (2\text{yr})$

p = 52%

Strong cascade sensitivity in South

 Even for softer spectra or extended sources

ULB CECUBE

follow-up by IceCube

Fermi-LAT blazar stacking analysis: **862 blazars** observed over **3 years**

■ Flux-weighted: *p* = 36%

■ Unweighted: p = 6%

*) Band denotes central 90 % of outcomes of different realizations from the γ -Luminosity Function. This limit also holds for all (quasi-)isotropic subpopulations, independent of their gamma emission.

^{**) 1-}flavor diffuse fit result [arxiv:1410.1749]

ULB

follow-up by IceCube

Fermi-LAT blazar stacking analysis: 862 blazars observed over 3 years

Flux-weighted: p = 36%

■ Unweighted: p = 6%

GRB stacking analysis: **506** observed in tracks. **807** in cascades

p = 32%

[accepted by ApJ]

ULB

follow-up by IceCube

Fermi-LAT blazar stacking analysis: **862 blazars** observed over **3 years**

■ Flux-weighted: p = 36%

■ Unweighted: p = 6%

GRB stacking analysis:

506 observed in tracks, 807 in cascades

p = 32%

LIGO **GW150914**

■ 3 off-source, low-energy ν within $\pm 500 \, \mathrm{s}$

follow-up by IceCube

Fermi-LAT blazar stacking analysis: 862 blazars observed over 3 years

- Flux-weighted: p = 36%
- Unweighted: p = 6%

GRB stacking analysis:

506 observed in tracks. **807** in cascades

p = 32%

LIGO **GW150914**

 \blacksquare 3 off-source, low-energy ν within $\pm 500 \, \text{s}$

Rapid follow-up under development!

- GRBs and other flaring objects
- "What did IceCube see?"

follow-up of IceCube events

Real-time Processing

Neutrino selection in **real-time** at South Pole

Optical (e.g. PTF)

http://gcn.gsfc.nasa.gov/notices_amon/67093193_127853.amon

Proposed Detector Extensions

IceCube-Gen2 / PINGU

extending the energy reach of IceCube

Gen2 would instrument $\sim 10 \, \text{km}^3$

IceCube-Gen2 / PINGU

extending the energy reach of IceCube

Gen2 would instrument $\sim 10 \, \mathrm{km}^3$

Layout optimization still in progress

IceCube-Gen2 / PINGU

ULB

extending the energy reach of IceCube

Gen2 would instrument $\sim 10 \, \text{km}^3$

Layout optimization still in progress

Surface veto could dramatically improve sensitivity to **Southern sources**

IceCube-Gen2 / PINGU

extending the energy reach of IceCube

Gen2 would instrument ∼ 10 km³

Layout optimization still in progress

Surface veto could dramatically improve sensitivity to **Southern sources**

PINGU low-energy infill array would allow studies of fundamental physics

Summary and Outlook

the dawn of neutrino astronomy

IceCube has discovered and begun to characterize an astrophysical neutrino flux in the TeV to PeV region.

Real-time follow-up campaigns have been in place through agreements with other observatories: optical, X-ray, gamma-ray, gravitational wave

Now beginning to release public alerts (starting events, high energy events, doublets) to broader community in real time for follow-up

IceCube upgrade under development: high energy extension, surface veto arrav. PINGU

Backup Slides

Sterile Neutrino Search

- We unblinded one year of data which had $\sim 20,000$ neutrino events.
- Distributions compatible with the no sterile hypothesis
- IceCube result is competitive with other limits and the World best at $\sim 0.1 1.0 \text{ eV}^2$.

See arXiv:1605.01990 for more details

UHE Neutrino Search

search for cosmogenic neutrinos with maximal UHE acceptance

UHE neutrinos distributed more broadly throughout sky than atmospheric backgrounds

[ICRC2015 / PoS(ICRC2015)1064 (6 year results)]

UHE Neutrino Search

search for cosmogenic neutrinos with maximal UHE acceptance

UHE neutrinos distributed more broadly throughout sky than atmospheric backgrounds

Good signal acceptance / background rejection possible with simple charge \times zenith cut

[ICRC2015 / PoS(ICRC2015)1064 (6 year results)]

UHE Neutrino Search

search for cosmogenic neutrinos with maximal UHE acceptance

UHE neutrinos distributed more broadly throughout sky than atmospheric backgrounds

Good signal acceptance / background rejection possible with simple charge \times zenith cut

No significant signal observed

Flux limits calculated in decades in energy

 \blacksquare Beginning to constrain cosmogenic ν scenarios

[ICRC2015 / PoS(ICRC2015)1064 (6 year results)]

Tau Neutrino Search

resolving ν_{τ} products using per-PMT data

 $\gtrsim 80\%$ of ν_{τ} produce two showers

IceCube cannot resolve two cascades except at UHE

[PRD 93, 022001 (2016)]

Tau Neutrino Search

resolving ν_{τ} products using per-PMT data

 $\gtrsim 80\%$ of ν_{τ} produce two showers

IceCube cannot resolve two cascades except at UHE

Instead, search for double pulses in individual PMT waveforms

[PRD 93, 022001 (2016)]

Tau Neutrino Search

resolving ν_{τ} products using per-PMT data

 \gtrsim 80% of $u_{ au}$ produce two showers

IceCube cannot resolve two cascades except at UHE

Instead, search for double pulses in individual PMT waveforms

No evidence yet for $\nu_{ au}$ in IceCube

■ Flux upper limits set

[PRD 93, 022001 (2016)]

Neutrino Oscillations

measuring atmospheric ν_{μ} disappearance

Can use deposited energy and path length through Earth to constrain neutrino oscillations

Best measurement so far is for ν_{μ} disappearance

Neutrino Oscillations

measuring atmospheric ν_{μ} disappearance

Can use deposited energy and path length through Earth to constrain neutrino oscillations

Best measurement so far is for ν_{μ} disappearance

 $\sin^2(\theta_{23})$ vs. $|\Delta m^2_{32}|$ fit consistent with other experiments

Sterile Neutrino Search

constraining oscillations to and from sterile neutrinos

Similar to standard oscillation search, but with a 3+1 neutrino flavor model

No evidence found — upper limits disfavor hints of sterile neutrinos from other experiments

Magnetic Monopole Search

ULB ICECUBE

search for bright signals from magnetic monopoles

Magnetic monopoles would produce bright tracks relative to muon tracks

Separate analyses search for monopoles above and below Cherenkov threshold

No evidence found — flux limits set as a function of $\beta = v/c$

[EPJ C76 (2016) 133]

