X-ray polarimetry - a new window on black hole systems

René W. Goosmann (on behalf of the XIPE collaboration)

Talk at the

IAU Symposium 324

New Frontiers in Black Hole Astrophysics

16th September 2016

Ljubljana, Slovenia

The X-ray Imaging Polarimetry Explorer under phase A study

Scientific objectives: what we want to observe and why

A **large** number of scientific topics and observable sources:

Astrophysics

Acceleration phenomena

Pulsar wind nebulae SNRs

Jets

Emission in strong magnetic fields

Magnetic cataclysmic variables Accreting millisecond pulsars Accreting X-ray pulsars Magnetars

Scattering in aspherical situations

X-ray binaries and AGN X-ray reflection nebulae

Fundamental Physics

Matter in Extreme Magnetic Fields: QED effects Matter in Strong Gravity Fields: GR effects close to accreting BHs Quantum Gravity Search for axion-like particles

XIPE is going to observe **almost all classes** of X-ray sources. After peer-review, ESA selected XIPE for a phase A study.

 \rightarrow We have put a structure of scientific working groups in place

Goal: the Yellow Book for XIPE

→ More than **300 supporting scientists** signed up to participate in the working groups!

Why it is now possible to conduct X-ray polarimetry

The Gas Pixel Detector

We developed at this aim a polarization-sensitive instrument capable of imaging, timing and spectroscopy

The photoelectric effect

The direction of the ejected photoelectron is statistically related to the polarization of the absorbed photon.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 X coordinate (mm)

Basic notions on polarization

Linear polarization states of coherent and incoherent emission

Coherent, strongly polarized emission as expected from synchrotron radiation produced in a highly-ordered magnetic field. Incoherent, weakly polarized radiation produced by a superposition of incoherent sources, such as turbulent magnetic fields emitting synchrotron emission. **Precesses producing X-ray polarization**

Synchrotron emission

Electron scattering

Dust (Mie) scattering

Resonant line scattering

Dichroic absorption

Dilution (by unpolarized radiation)

General Relativity

Weak polarization:

Birefringence in strong magnetic fields

Acceleration phenomena: Unresolved jets

The origin of the seed photons in extragalactic jets

Blazars are extreme accelerators in the Universe, but the emission mechanism is far from being understood.

In inverse Compton dominated Blazars, a XIPE observation can determine the origin of the seed photons:

- Synchrotron-Self Compton (SSC)?
- polarization angle may be different.

The polarization degree determines the electron temperature in the jet.

In synchrotron-dominated X-ray blazars, multi-wavelength polarimetry probes the structure of the magnetic field along the jet.

Unique contribution: what lightens up the molecular clouds in Sgr A*?

Cold molecular clouds around Sgr A* show a neutral iron line and a Compton bump \rightarrow Reflection from an external source?

No bright source is there. Are they reflecting X-rays from Sgr A* when it was 10^6 times brighter?

Polarization by scattering from Sgr B complex, Sgr C complex

The angle of polarization pinpoints the source of X-rays (possibly SgrA*)
The degree of polarization measures the scattering angle and determines the true distance of the clouds from Sgr A*.

Disentangling the geometry of the hot corona

The perturbation by the effects of General Relativity

14 /M= 0 12 polarization degree (%) 0.5 0.9 10 0.99 0.998 8 6 2 0 0.1 1.0 10.0 100.0 100 50 polarization angle (deg) C -50 -100 100.0 0.1 1.0 10.0 E_{obs} (keV)

Extended corona above disc

Truncated disc + spherical corona

Basic notions of polarization

Spot light on relativistic effects

Dovčiak et al. (2008), see yesterday's talk by Pauli Pihajoki

Constraining black hole spin with XIPE

Supporting contributions: constraining black hole spin

So far, three methods have been used to measure the BH spin in XRBs: 1.Relativistic reflection (still debated, requires accurate spectral decomposition); 2.Continuum fitting (requires knowledge of the BH mass, distance and inclination); 3.QPOs (all three QPOs required to completely determine the parameters).

Problem: for a number of XRBs, the methods do not agree!

 $a = J/J_{max} = 0.290 \pm 0.003$ For GRO J1655-40: OPO: Continuum: $a = J/J_{max} = 0.7 \pm 0.1$ $a = J/J_{max} > 0.95$ Iron line: Static BH **Energy dependent rotation of the** Rotation of polarization position angle [deg] X-ray polarization plane a = 0 a = 0.5 Two more observables: polarization -10 degree & angle a = 0.8 Two parameters: disc inclination & -15 black hole spin a = 0.95 Simulated XIPE observation -20 of a GRS 1915+105 type source in the soft state Maximally exposure time 500 ksec -25 rotating BH - MDP < 0.36% in all energy bins - expected polarization > 4% in all energy bins -30 5 7

photon energy [keV]

I hope I was able to show that...

- X-ray polarimetry is going to make important unique and supporting contributions to astrophysics and also fundamental physics

- X-ray polarimetry is going to serve a large scientific community involving almost all source types in the high energy domain

If you are interested, do not hesitate to join the mission project of XIPE!

More information can be found here:

http://www.isdc.unige.ch/xipe/

