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Three events compared
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~ e Advanced LIGO Sensitivity:
LIGOo Observing Run 1 vs design sensitivity
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Prospects for Observing and Localizing Gravitational-Wave

Transients with Advanced LIGO and Advanced Virgo

Abbott, B. P. et al.

The LIGO Scientific Collaboration and the Virgo Collaboration
(The full author list and affiliations are given at the end of paper.)
email: lsc-spokesperson@ligo.org, virgo-spokesperson@ego-gw.it
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Figure 1: aLIGO (left) and AdV (right) target strain sensitivity as a function of frequency. The binary
neutron-star (BNS) range, the average distance to which these signals could be detected, is given in
megaparsec. Current notions of the progression of sensitivity are given for early, mid and late commissioning
phases, as well as the final design sensitivity target and the BNS-optimized sensitivity. While both dates
and sensitivity curves are subject to change, the overall progression represents our best current estimates.

2015-2016 (O1) A four-month run (beginning 18 September 2015 and ending 12 January 2016)
with the two-detector H1L1 network at early aLIGO sensitivity (4080 Mpc BNS range).

2016 —-2017 (O2) A six-month run with HI1L1 at 80-120 Mpc and V1 at 20-60 Mpec.
20172018 (O3) A nine-month run with HI1L1 at 120170 Mpc and V1 at 60 -85 Mpc.
2019+ Three-detector network with H1L1 at full sensitivity of 200 Mpc and V1 at 65115 Mpec.
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Past and short term future
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The real instrument is
far more complex...



LIGO Advanced LIGO Noise Breakdown
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LIGO Future BBH observations
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FIG. 12. The probability of observing N > 10, N > 35, and N > 70
highly significant events, as a function of surveyed time-volume. The
vertical line and bands show, from left to right, the expected sensitive
time-volume for the second (0O2) and third (O3) advanced detector
observing runs.

Improve the sensitivity of
the Advanced LIGO
detectors and operate for
longer

2nd scientific run “0O2”
starts in next couple of
months

Advanced Virgo should

join the observing
network soon
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LIGO Multi-detector network needed for

localisation

Projected ranges and detection rates for binary neutron star inspirals -
(arXiv:1304.0670)

Estimated Number % BNS Localized
Run BNS Range (Mpc) of BNS within
Epoch Duration LIGO Virgo Detections | 5deg? | 20deg?
2015 3 months 40 — 80 — 0.0004 - 3 — -
201617 6 months | 80— 120 | 20 — 60 | 0.006 — 20 2 5—12
201718 9 months | 120—-170 | 60 -85 | 0.04 —100 | 1 -2 10 — 12
2019+ (per year) 200 65— 130 | 0.2 — 200 3-8 8 — 28
2022+ (India) | (per year) 200 130 0.4 — 400 17 48
using “low” rate, i t using “high” rate,

WOrst noise curve

best noise curve

Wide range of estimates from observed binary pulsars and population synthesis

simulations — begs for observational truth!
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LIGO

Sky localization with 3 sites ...

Typical 90% error box areas for Neutron Star-Neutron Star binaries
» median > 20 sq deg Fairhurst, CQG 28 105021 (2011)

L1GO-G1301140



LIGO What more do we need soon?

Need a network of detectors for good
source location and to improve overall
sensitivity

‘KAGRA’ New 3km detector in
Japan (cryogenic, underground
interferometer in Kamioka mine)

Installation of a 39 Advanced LIGO
detector India

Thus Second Generation Network
is developing:

Advanced LIGO/Advanced
Virgo/Geo-HF KAGRA/LIGO India




Advanced GW Detector Network:
Under Construction =2 Operating
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The Global Network c. 2020+

LIGO-G1301140




... and with 5 sites

Fairhurst (2011)

LIGO-G1301140



LIGO Pians for the era of gravitational wave astronomy

- We expect soon to be making regular detections...

- When we do, it is inevitable we will want to see
further into the Universe.....see new sources......with
better signal-to-noise .....driven by maximising the
astronomy and astrophysics we can do

- Planning has started for the next steps.

LIGO-G1301140



GWIC

Gravitational Wave International Committee

The global Gravitational Waves roadmap
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From the Gravitational Wave International Committee (GWIC roadmap - available at:
http://gwic.ligo.org/roadmap/ )




LIGO

Maximising the potential of Advanced detectors

Two ‘Dawn’ meetings in May 2015, Maryland, July 2016, Atlanta —
consider in various detection scenarios what directions the field should

take.

Considered:

» Likelihood of detecting
different sources

» Payoffs of improving
sensitivity in different
frequency bands

« Technological readiness of
instrumentation improvements

~~

....and of course $$/££)

Strain [1/VHZ]

P N
| '

i || == Quantum noise

Seismic noise

= Gravity Gradients
Suspension thermal noise |~ 7 |

Coating Brownian noise

Excess Gas

L | me——Total noise

Coating Thermo-optic noise 100
Substrate Brownian noise  [i— + r H

11 | I |
EERRe e gt L ENE = =
|
|

Frequency [Hz]

https://dcc.ligo.org/public/0121/P1500147/001/WhatComesNextForLIGO.pdf
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LIGO

Maximising the potential of Advanced detectors

‘Immediate’ targets:
» Mitigation of Newtonian Noise
« Addition of squeezed light

* |mproved coating thermal
noise

* (and possible suspension
upgrades)

For sensitivity gains of upto ~5 10~ F= f:"f £ = \-.

in event rate over baseline
design.
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GWIC

Gravitational Wave International Committee

Maximising the potential of the field
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From the Gravitational Wave International Committee (GWIC roadmap - available at:
http://gwic.ligo.org/roadmap/ )
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Future detector network evolution
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ET should detect of order 10° compact binary coalescences per year: neutron star binaries to z~ 2-4, stellar
mass black hole binaries to z ~8-20, and intermediate mass black holes (up to 10* solar masses) to z~5-15.
http://www.stfc.ac.uk/files/2016-draft-roadmap-for-particle-astrophysics/

ET/Cosmic Explorer will take a census of black holes when the Universe was a mere 650 million years old
B. Sathyaprakash, GWADW 2016
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What new technologies are needed?

» Longer arms . L N Pim

: \ \\ - HA
» Underground site? \ ‘t\\k %75;
<

» Higher laser powers
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a

> Cryogenic optics for low thermal nois¢ "
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Einstein GW \’\_J/
. . Telescope
» Improved mirror coarings IO AN I

1 10 100 1000 10000

» Larger, heavier optics; non-Gaussian
laser beams;

» Laser wavelength (Silicon:1550nm;
fused Silica: 1064nm)

» Frequency dependent 10 dB ,squeezing’




THE GRAVITATIONAL WAVE SPECTRUM
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The future

The field of gravitational-wave astronomy has begun!

100s of black hole observations expected in next 5 years

2017: Virgo will improve sky sensitivity
2020+: LIGO India, Einstein Telescope, LIGO Voyager

2030+: Space-based detectors




