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ELECTRON THERMODYNAMICS IN 3D GRMHD SIMULATIONS WITH
APPLICATION TO SAGITTARIUS A*

{ SEAN RESSLER1, SASHA TCHEKHOVSKOY1, ELIOT QUATAERT1, MANI CHANDRA2, AND CHARLES GAMMIE2}
1UC BERKELEY, 2UI URBANA-CHAMPAIGN

MISSION STATEMENT
Directly connect GRMHD simulations to observa-
tions of low luminosity accreting black holes by em-
ploying a self-consistent treatment of electron ther-
modynamics [5]. To date, this includes:

1. Electron heating
2. Anisotropic electron thermal conduction
3. Self-consistent Monte Carlo radiation transport

and interactions (emission, scattering, and ab-
sorption) [See Ben Ryan’s Poster for details]

INTRODUCTION
Several accreting black hole systems of interest fall
into the Radiatively Inefficient Flow (RIAF) regime,
emitting and accreting at significantly less than the
Eddington rate. In these hot, low density disks,
Coulomb collisions are inefficient at transporting
energy between the free electrons and ions in the
plasma, so a single fluid model is untenable. Here we
present for the first time a method to self-consistently
evolve the electron entropy alongside standard 3D
GRMHD calculations and apply it to Sagitarrius A*
(Sgr A*).

3D SIMULATION RESULTS
Mass Density with B-field lines (top left), radially averaged plasma parameter, � = p

g

/p
M

, and electron
heating fraction, f

e

, (top right), electron to gas temperature ratio (bottom left), and the heat flux suppression
factor due to particles being constrained to move along field lines: |b̂

µ

qµ
iso

|/|q
iso

| (bottom right).
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CONCLUSIONS

Relativistically hot electrons are concentrated in a
narrow region in the corona/jet. This is due to the

strong �-dependence of our electron heating
fraction, f

e

.

Our model produces significant NIR and X-ray
variability without the need for nonthermal

particles. This variability is linked to variability in �
via our electron heating fraction, f

e

, and is much
higher in magnitude than that of a constant T

e

/T
p

model.

For standard “SANE” torii, electron conduction has
a negligible observational effect. This is because

the temperature gradients are predominantly in the
poloidal directions while the magnetic field is

predominantly in the toroidal direction.

In our model, the low frequency radio emission is
mainly produced by outflow at large radii but falls
off more steeply with frequency than observations.
It is not clear if this is a robust result or a byproduct
of either (a) the chosen initial conditions or (b) the
fact that the simulation may be under-resolved in

those regions. Ongoing and future work will
distinguish between these possibilities.

MODEL AND COMPUTATIONAL METHODS

Electron Thermodynamics
To the standard GRMHD equations, we add an elec-
tron entropy equation with subgrid models of electron
heating and anisotropic electron conduction:

⇢T
e

uµ@
µ

s
e

= f
e

Q�r
µ

qµ
e

� a
µ

qµ
e

f
e

(�, T
e

/T
p

, ...) =

⇢
⇠ 1 � . 1
⌧ 1 � � 1

,

where Q is calculated directly from simulations and
f
e

is based on semi-analytic calculations of turbulent
damping of Alfvèn waves in magnetized plasmas. For
details on the model for anisotropic electron conduc-
tion along magnetic field lines, see [1].
blah

GRMHD
The simulation is performed with a 3D, parallel ver-
sion of harm [3], a conservative GRMHD code. We
initialize an equilibrium disk with spin a = 0.5 seeded
with a weak, single-loop, poloidal magnetic field and
run until an approximate steady-state is reached. Our
analysis is done over a time interval of 2, 000 M.

Radiation
Radiation transport is done post-processing using a
ray tracing code [4] for images and a Monte Carlo
scheme (grmonty [2]) for spectra. Both include syn-
chrotron absorption and emission while the latter in-
cludes Compton scattering. Time averages are com-
puted by averaging the spectra/images of single time
slices.

MODELLING SAGITTARIUS A*
space

Left: SEDs averaged over 18.5 hours with time-variability represented by the shaded regions. The T
p

/T
e

= 3 model is included for comparison purposes as an example
of a previous method adopted in literature. Right: Time averaged images on a linear scale. The white box and the entire 230 GHz image are 19r

g

⇥ 19r
g

.

Ressler, AT+ 2016: 
electron 

thermodynamics in 
LLAGN to interpret 

upcoming EHT 
observations
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Pj = k�2 . Ṁc2

How strong are 
the jets?
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MADs recycle:
rotation destroys

magnetic flux bundles 
escaping from the black 
hole and mixes them 

back into the disk
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Binary Merger Disks Gone MAD

MBH = 3 Msun

Mdisk = 0.03 Msun

a = 0.8
Bp = 1015 G

(AT, Fernandez, 
Foucart+, in prep)
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t [s]

Binary Merger Disks Gone MAD

Jet power shows no trends 
before abruptly switching off 
at MAD onset (TDEs: AT+2014, 

GRBs: AT & Giannios 2015)

Jet opening angle ~ 0.2 rad 
agrees with observations 

(Fong+2015)

(AT, Fernandez, 
Foucart+, in prep)
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t [rg/c]

a = 0.9
spherical accretion

no rotation

0

Tchekhovskoy & Dai, in prep t [rg/c]

With rotation, magnetic 
flux bundles get recycled: 
sheared out and mixed 
back into disk: MAD

Can low disk ang. mom. 
suppress jets in TDEs and 
at the Galactic Centre?
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healthy jets.

Dynamo -> field polarity 
flips -> jet dissipation?

Is weaker/small-scale 
turbulent field sufficient to 

make jets?

Toroidal field simulations 
extremely expensive. 

How can we make them 
accessible?skip



Alexander (Sasha) Tchekhovskoy, UC Berkeley IAU, Ljubljana, 12-16 Sep 2016

GPUs Open Entirely New Possibilities
• Graphical Processing Units (GPUs) is a new 

disruptive technology

• cutting edge of modern supercomputing

• Multi-GPU 3D H-AMR (“hammer”, Liska, AT+’16): 

• 3D, staggered fields, AMR
• 100x speedup: 1 GPU = 100 cores
• Excellent scaling to >= 4096 GPUs.
• based on an open-source HARM2D
• new GPU-based systems have 16 GPUs/node:
• Stanford XStream (production now)
• ORNL Summit (production in ’18)

• Whole slew of important applications:
• Long-term disk evolution
• Tilted thin disks
• Etc.

Matthew Liska
(U of Amsterdam)

skip
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Magnetic instability?
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Summary

• Dynamically important magnetic fields everywhere:
‣ Jets are robust and happy to feed on anything
‣ BUT: strong jets benefit from disk rotation

• Large-scale poloidal field dynamo is now a reality
‣ No need for large-scale poloidal flux: toroidal would do too
‣ Can small-scale turbulent magnetic field produce jets?

• Jet morphology is controlled by 3D external kink:
‣ low-power jets are unstable and get stalled inside galaxies
‣ FRI/FRII dichotomy likely
- mediated by 3D magnetic kink instability 
- controlled by ratio of jet power to ambient density


