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ABSTRACT

We propose that some, perhaps most, gamma-ray bursters are at cosmological distances, like quasars, with a
redshift z = 1 or z = 2. This proposition requires a release of supernova-like energy of about 10°! ergs within
less than 1 s, making gamma-ray bursters the brightest objects known in the universe, many orders of magnitude
brighter than any quasars. This power must drive a highly relativistic outflow of electron-positron plasma and
radiation from the source. The emerging spectrum should be roughly a black body with no annihilation line, and
a temperature T = (E/4nr{o)'/*. As an example the spectrum would peak at about 8 MeV for the energy
injection rate of E = 10°! ergs s™! and for the injection radius r, = 10 km.

Paczynski (1986) — he was (mostly) right!



van Paradijs et al.
1997; Costa et al. 1997
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GRB 980425/ SNI8bw oo 1

Type Ic with broad . .
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expansion
velocities
>~20000 km/s

Magnitud
Log(F,) + const.

SN 1984L (Ib)

. * 5000 6000

L {dayvs alter bursl)
At S Wavelength (A)




Low-luminosity bursts

Suggestion of a distinct population from luminosity function.

Are low-lum
bursts same?




Low-luminosity bursts

In some cases, unusual soft and long-lived “prompt” emission — shock
breakout rather than internal shocks? (Campana et al. 2006; Bromberg
et al. 2011; Nakar 2015)
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GRB 030329/
SN2003dh

First SN associated with
“high luminosity” GRB.

Hjorth et al. 2003
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Similarity of GRB-SN

Despite the ~6 order of mag difference in GRB luminosity, the accompanying
SNe look rather similar, including possible peak-mag decline-rate relationship.

Bolometric LCs of
GRB-SNe
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Hosts

Actively star forming,
typically low

Fruchter et al. 2006
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GRBs seem to roughly follow sub-solar metallicity SF

10~-20% of GRBs Rest wavelength (um)
occurring in
relatively massive
and dusty hosts,
but still not
unbiased tracer of
all star formation.
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GRBs seem to roughly follow sub-solar metallicity SF
Rate vs. Metallicity
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LGRBs have a
strong intrinsic
preference for low
metallicity
environments.

Somewhat lower Z cut-
off from the lower
redshift events (but
includes several “low-
luminosity” GRBs).



The enVII“OHment S From hosts and afterglow spectroscopy,

mostly low (at least ~sub-solar) metallicity.
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Single and/or binary channel?

Require rapid rotation, envelope stripped, massive core.

Z,=0.002
;L B / Rapidly rotating\

 BH (SNIb); "' "\ si.ngle star models
I
i | 5= chemically
; .‘ homogeneous
1 .

GRB

evolution = require

Z <~ 0.1 Z, to give
sufficient final

angular momentum

\ to make GRBs /

Yoon et al. 2006




Single and/or binary channel?

Require rapid rotation, envelope stripped, massive core.

CE Envelope (H)
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naries also hard to to prevent loss of
One possibility is explosive common

envelope ejection during case C mass
transfer = should work up to solar

Podsiadlowski et al. 2010
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GRB populations

associated with core

collapse of some H-

ty, (seconds)

Kouveliotou et al. 1993



Short-duration bursts

Thanks largely to Swift, many tens of short GRBs have now been
rapidly localised to few arcsec accuracy, allowing identification
of likely hosts, and hence redshifts in some cases.

Lin 050709B
GRB050509b m
+ Keck /LRIS R-band Imaging

XRT Error Circle « *

iy Fox et al.

9 May 2005
.S. Bradley Cenko




Short-hard GRBs - compact binary mergers?

e.2. GRBO90515
Associated with a range of host stellar populations. afterglow R~26.5 at 2
hours post burst. No

Sometimes apparently far from their host. obviois Host:

A

Sub—arcsec loc. + XRT
Sample: 36

"Host—less"
17%

Inconclusive
19%

Evidence generally consistent with
compact binary merger origin.

Fong et al. 2013



GRB 1506038

Tanvir et al. 2013

Transient emission seen Consistent with high
in near-infrared in HST |@™ ik opacity due to synthesised

imaging at 9 days post- |l 4 r-process elements = line-
burst. blanketing of optical light.




GRB 1506038

Time since GRB 130603B (days)
1 10

* X—ray
* F606W
*F160W

omparison to Barnes

Kasen (2013) models

suggests ejected mass
~0.05 Mg
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GRB 1501018

short and unusual host

+ PL/fit
+  CPL fit
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IO
background galaxy.

NT et al. in prep.



GRB 1603218

Ongoing!




Ultra-long GRBs

New class of very long-lived GRBs
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so you think YOU've | Is the large diversity (spikiness) of

g°t p'OblemS', prompt behaviour expected?

Why little evidence of burst properties
correlating with environmental
properties?

What gives rise to “precursor”
episodes, when seen?

Engines — black holes or magnetars or
both (or neither)?
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