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Relativistic shocks
▸ GRBs, AGNs, Microquasars
▸ Collisionless: the mean free path for Coulomb collisions is
too large, often exceeding the size of the system

▸ Could generate strong magnetic field even when they
propagate in unmagnetized media (e.g. Medvedev, Loeb
(1999)) ⇒ Sources of synchrotron emission

Main problem (Gruzinov, 2001; Sironi et al. 2015):

from Chang, Spitkovsky, Arons, 2008



Weibel instability. Linear theory.

K = kωp/c, Ω = γ/ωp,

ξ = cΩ/(K ∗ vT�),

A =
T∥
T�

− 1.

PDF
f(p) ∼ e−p

2
x/(2T∥)−(p2

y+p2
z)/(2T�).

Dispersion relation:

K2 +Ω2 = −1 + (1 +A)(1 + ξZ(ξ)) = A + (1 +A)ξZ(ξ).

Klim ∼
√
A, Kmax ∼ A3/2, γk ∼ k3
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New model of a relativistic shock (Derishev, Piran 2016)
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Simulation setup
Initial setup: box filled with isotropic e−e+ Maxwellian plasma
with temperature T = 50keV. The injected plasma has
two-temperature anisotropic distribution (T� = 50keV,
T∥ = 200keV). The number density of injected component is

Na(t) =N0δ

⎧⎪⎪⎨⎪⎪⎩

ti + t
ti

, −ti ≤ t ≤ 0,

1, t > 0.

In the talk I will use dimensionless times:

τ =
t

∫
−ti

ωpdt − τi, τi =
0

∫
−ti

ωp dt .

We performed two sets of simulations:
▸ After the injection we track the evolution of the field
▸ After the injection we model shock passage through the
plasma by artificially stretching the PDF (doubling px
component of each particle momentum) and letting system
to evolve



Simulation parameters

▸ PIC-code (EPOCH), FDTD + Vay + 3rd order B-spline,
2D3V Geometry

▸ Conservation of energy δe/e ≲ 10−5

▸ Grid 1600 x 1600, periodic bc
▸ ∼ 1000 ppc
▸ Tsim up to 20000/ωp
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Generation of the magnetic field via Weibel instability.
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Evolution of the magnetic field

Figure: Evolution of magnetization for different durations of injection:
instantaneous (black line), ωpti/(2π) = 500 (red line),
ωpti/(2π) = 2000 (blue line).



Spatial scale evolution

Figure: The average wavelength ⟨λ⟩ at the end of the injection as a
function of τi − τmax where τmax corresponds to the time, where
maximum of the magnetic field energy is observed. Star represents a
simulation with exponentially growing injection rate.



Decay of the magnetic field

Figure: The magnetic field decay time scale as a function of injection
duration. Diamonds show the decay time scale predicted theoretically
in phase mixing model. Star represents a simulation with
exponentially growing injection rate.



Evolution of the magnetic field at the shock.

Figure: Solid line: the shock passage is preceded by injection of
anisotropic plasma component with δ = 0.5 and ti = 500 ⋅ 2π/ωp.
Dashed line: the shock passes through plasma with zero magnetic
field (no preceding injection). Dash-dotted: the decay of the field
after injection without passage of the shock.



Power spectum of the magnetic field

Figure: Power spectra Pk of the magnetic field just before the shock
passame (τ = 0) and shortly after the shock passage at τ = 100, that
approximately corresponds to the maximum of the magnetic field.



Main results.

▸ Weibel instability, when it develops in plasma with
continuous supply of particles with anisotropic distribution,
leads to generation of large-scale magnetic fields.

⟨λ⟩ ∼ (τi − τmax)1/3

▸ The field decay time is approximately equal to the injection
duration, confirmed in simulation for τi up to 20000ω−1

p

▸ This large-scale magnetic field could be amplified at the
shock-front and then could survive for a long time in the
downstream, explaining efficient synchrotron emission from
relativistic shocks.
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