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Outline

Light, weakly-coupled new particles — motivation &
constraints

Black hole superradiance — particle production by energy
extraction

» Observational signatures
* Spin-down of black holes

- (Coherent gravitational wave emission
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Gravitational production of
lght particles

 New particles must couple to SM through gravity

» Problem: astrophysically, spacetime curvature scale 2 km
=> effective source density very low

- e.g. BH Hawking temperature, Ty = 1/(87GM) ~ 10~ ° K

- Take advantage of coherence enhancement: classical
energy extraction from spinning BHSs



Extracting energy and angular
momentum from black holes

* Spinning BHs have ergosphere - region where particles can
have negative energy (as viewed from Infinity)

-
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“Event horizon

 Mechanical Penrose process: throwing negative-energy
darticle into horizon
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VWave superradiance

Ingoing flux at horizon can s
correspond to negative E flux

For wave with angular guantum
number m,

O ~ eiwt—imqb
1 2
P = §g00AHw(w —mQy)

Incoming waves can be
scattered with amplification
(max 4.4% for spin-1, | 38% for

spin-2)

[Teukolsky & Press, 19/74]



VWave superradiance
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Black hole bombs and bounad
states

- "Black hole bomb™ : superradiant scattering with a mirror
[Teukolsky & Press, 1972]

+ Massive particles can form bound states around BH, enabling same
exponential amplification
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(Pseudo)scalar bound states

For small mass, bound state spectrum Is hydrogen-like
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(Pseudo)scalar bound states

» For small mass, bound state spectrum is hydrogen-like
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Superradiant growth rates

- Smaller alpha, larger | = amplitude near horizon suppressed
Im(w) ~ a*t*(a,m — 2ur p
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Superradiant growth rates

- Smaller alpha, larger | = amplitude near horizon suppressed

Im(w) ~ a*T4(

- If a/l >1/2

then angular phase

velocity faster than
horizon, so mode
s decaying

- Fastest growth
rate for

p~1/(GMpn)
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Superradiant growth rates

- Smaller alpha, larger | = amplitude near horizon suppressed

Im(w) ~ a*t*(a,m — 2ur p
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Superradiant growth rates

- Smaller alpha, larger | = amplitude near horizon suppressed

Im(w) ~ a*T4(

-or stellar BH, e-
folding times In
dlot ~ 100 sec -
100 yr
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Black hole spin-aown




Exclusions from BH spin

measurements

* Higher BH spin => innermost stable orbit at smaller radius
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Exclusions from BH spin
measurements

* Higher BH spin => innermost stable orbit at smaller radius
» Accretion disk can get closer to BH

» Detect X-rays from accretion disk, infer disk properties




Black Hole Spin a,

X-ray spin measurements

Spin measurements from different black holes:
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Black Hole Spin a,

X-ray spin measurements
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Black Hole Spin a,

X-ray spin measurements
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Light particle exclusion limits

Large self-coupling => bosonic cloud growth cut off
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Binary black hole mergers

+ LIGO GW 509 | 4: first

direct detection of
oravitational waves!

* From 2.5 events so far
infer merger rate of 9-240
/ Gpc yr

- At design sensitivity,
/0-1200 visible mergers /
year!
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[Abbot et al, 201 6]
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BBH spin measurements

* Spin-orbit interaction => BH
spin components parallel to
orbrtal axis affect inspiral
waveform

* Spin components misalighed
with orbital axis can cause
precession, modulating inspiral
waveform

* Intrinsic spins contribute to spin
of final BH, which Is constrained
by merger and ringdown
waveform

[Abbot et al, 2016]
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- GWI509 14:1f spins are aligned,

obtain a1 < 0.2, as < 0.3 (90%)



Black Hole Spin a,
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Black Hole Spin a,
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Gravitational radiation from
bound states

» Bosonic cloud corresponds to classical scalar field oscillations =>
osclllating energy-momentum

+ Oscillating T}, = V,0Vyp — g, (... ) sources gravitational
radiation

1 .
+ Decomposing into levels, ¥ = —=— vV Nz‘%‘e_wit h.c.
have V214 Ez:

Lij = zi (N1(V7;¢1)(Vj¢1)6_2w1t + V/N1No(Vih} ) (Vthg)e 27wt 4 )

1

“Annihilations” “Iransitions”
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Gravitational radiation from
bound states

» Bosonic cloud corresponds to classical scalar field oscillations =>

osclllating energy-momentum

+ Oscillating T}, = V,0Vyp — g, (... ) sources gravitational

radiation

have

“Annihilations” “Iransitions”



All-Sky GW search

From each BH with a cloud, expect GVWVs from annihilations at frequency

2
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Summary

» Black hole superradiance is a unigue probe of light, weakly-coupled bosons

- Gravitational wave detectors can probe SR in multiple, complementary
Ways:

* Monochromatic GWs from cloud
- Statistics of BH spins, measured in mergers
» Signals possible in near future!

- Observations of supermassive black holes, via telescopes and future lower-
frequency GW detectors, can constrain lower-mass bosons

* Less clean astrophysical environment - further investigation required






Statistical evidence

Could obtain statistical evidence for structure in mass-spin
plane with 50-200 measurements
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GWs trom newly formed BHSs

Measure parameters of -
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GWs trom newly formed BHSs

Measure parameters of f (H2)
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