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Outline

• Light, weakly-coupled new particles — motivation & 
constraints

• Black hole superradiance — particle production by energy 
extraction

• Observational signatures

• Spin-down of black holes

• Coherent gravitational wave emission



Light, weakly-coupled new 
particles

Mass

Coupling 
to SM

Experimentally  
excluded

SUSY? Grand 
Unification?

New long 
range forces?

Axions?

Standard 
Model



Light, weakly-coupled new 
particles

Mass

Coupling 
to SM

Experimentally  
excluded

Black hole 
superradiance

LHC

Standard 
Model



Gravitational production of 
light particles

• New particles must couple to SM through gravity

• Problem: astrophysically, spacetime curvature scale                
=> effective source density very low

• e.g. BH Hawking temperature, 

• Take advantage of coherence enhancement: classical 
energy extraction from spinning BHs

& km

TH = 1/(8⇡GM) ⇠ 10�8 K



Extracting energy and angular 
momentum from black holes

• Spinning BHs have ergosphere - region where particles can 
have negative energy (as viewed from infinity)

• Mechanical Penrose process:  throwing negative-energy 
particle into horizon

Event horizon

Ergosphere
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Extracting energy and angular 
momentum from black holes

• Spinning BHs have ergosphere - region where particles can 
have negative energy (as viewed from infinity)

• Wave Penrose process:  transmitted wave has negative 
energy, reflected wave carries extra energy away
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Wave superradiance
• Ingoing flux at horizon can 

correspond to negative      flux

• For wave with angular quantum 
number m, 

• Incoming waves can be 
scattered with amplification 
(max 4.4% for spin-1, 138% for 
spin-2)
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[Teukolsky & Press, 1974]
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• “Black hole bomb” : superradiant scattering with a mirror

• Massive particles can form bound states around BH, enabling same 
exponential amplification

Black hole bombs and bound 
states

[Teukolsky & Press, 1972]
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(Pseudo)scalar bound states
• For small mass, bound state spectrum is hydrogen-like
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Superradiant growth rates
• Smaller alpha, larger l ⇒ amplitude near horizon suppressed
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• For stellar BH, e-
folding times in 
plot ~100 sec - 
100 yr



Black hole spin-down
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Exclusions from BH spin 
measurements

• Higher BH spin => innermost stable orbit at smaller radius

• Accretion disk can get closer to BH

• Detect X-rays from accretion disk, infer disk propertiesContra-rotrating
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X-ray spin measurements

ma=10-11eV
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X-ray spin measurements

ma=3x10-12eV
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Light particle exclusion limits
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Binary black hole mergers

• LIGO GW150914: first 
direct detection of 
gravitational waves!

• From 2.5 events so far, 
infer merger rate of 9-240 
/ Gpc yr 

• At design sensitivity, 
70-1200 visible mergers / 
year!

[Abbot et al, 2016]



BBH spin measurements

• GW150914: if spins are aligned, 
obtain a1 < 0.2 , a2 < 0.3 (90%)

• Spin-orbit interaction => BH 
spin components parallel to 
orbital axis affect inspiral 
waveform

• Spin components misaligned 
with orbital axis can cause 
precession, modulating inspiral 
waveform

• Intrinsic spins contribute to spin 
of final BH, which is constrained 
by merger and ringdown 
waveform

[Abbot et al, 2016]



Spin-down
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Spin-down

ma = 6 x 10-13 eVHactualL
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Spin-down

ma = 6 x 10-13 eVHmeasuredL
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Gravitational radiation from 
bound states

• Bosonic cloud corresponds to classical scalar field oscillations => 
oscillating energy-momentum

• Oscillating                                                 sources gravitational 
radiation

• Decomposing into levels,  
have
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All-Sky GW search
• From each BH with a cloud, expect GWs from annihilations at frequency

ANNIHILATIONS
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• Coherent, monochromatic 
signals, very slow 
frequency drift

• Signals from different black 
holes clustered just below 
 

• Expected signals 
determined by BH mass 
and spin distribution - 
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Summary
• Black hole superradiance is a unique probe of light, weakly-coupled bosons

• Gravitational wave detectors can probe SR in multiple, complementary 
ways:

• Monochromatic GWs from cloud

• Statistics of BH spins, measured in mergers

• Signals possible in near future!

• Observations of supermassive black holes, via telescopes and future lower-
frequency GW detectors, can constrain lower-mass bosons

• Less clean astrophysical environment - further investigation required





Statistical evidence
• Could obtain statistical evidence for structure in mass-spin 

plane with 50-200 measurements
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GWs from newly formed BHs
• Measure parameters of 

newly-formed BH => 
prediction for SR process, 
given axion mass

• Axion cloud takes days/years 
to grow

• Typical reach ~ 30 Mpc for 
annihilation GW signals

• e.g. if GW150914 had been 
< 10 Mpc away, potentially 
observable signal



GWs from newly formed BHs
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