

Observational Progress in Identifying and Characterizing Tidal Disruption Flares

Brad Cenko NASA Goddard Space Flight Center IAU 324: New Frontiers September 13, 2016

Tidal Disruption Flares (TDFs)

Rees 1988

De Colle+ 2012

Luminous (10⁴⁴ erg s⁻¹), long-lived (> months), thermal (10⁵ K) flares from nuclei of otherwise quiescent galaxies

Early TDF Discoveries: X-Ray Selected

- Earliest events identified largely by ROSAT
- Agreed reasonably well with simple analytical models (*kT* <~ 100 eV, blackbody radius ~
 tidal radius, *t*-5/3 decay (though sparsely sampled)
- Subsequent X-ray discoveries have indicated additional diversity (see upcoming talk by Richard Saxton)

Komossa, 2015

Rise of Optical Time-Domain Surveys

7.1 deg camera on Palomar 48 inch Oschin Schmidt telescope

Wide-field, high cadence optical transient surveys (Pan-STARRS, PTF, ASAS-SN) have revolutionized the search for TDFs

Rise of Optical Time-Domain Surveys

Summit of Palomar Mountain

Factory = fully automated, end-to-end discovery and follow-up

Observational Puzzles

- Low (and slowly evolving) temperature in optical/UV discovered TDFs
- Ubiquity of outflows (variety of velocities)
- Peculiar abundance patterns in optical (and particularly UV) spectroscopy
- Preferentially observed in "post-starburst" host galaxies

PS1-10jh: Cool, Constant Temperature

- PS1-10jh: Nucleus of non starforming galaxy
- After removing host galaxy,
 blackbody continuum with T ~ 2
 x 10⁴ K (factor of > 5 lower than
 ROSAT events)
- No sign of color evolution for > 100 (rest-frame) d
- Corresponding blackbody radius
 ~ 10¹⁵ cm a factor of 10-100
 larger than the tidal radius!

Gezari et al., 2012

ASASSN-14li: At Least 2 BB Components

Comparable luminosity but varying temperature ⇒ **distinct emitting regions**!

Possible Explanations: Circularization and Reprocessing

- I. Efficient circularization at large radii (due to relativistic precession) leads directly to emission at these distances (e.g., Shiokawa et al., 2015)
- * 2. Reprocessing of inner accretion disk by outer layer of material yields large photosphere (e.g., Roth et al. 2015)

Shiokawa et al., 2015

Outflows I: Relativistic TDFs

Sw J1644+57: A remarkable high-energy transient

Outflows I: Relativistic TDFs

- Star tidally disrupted by SMBH
- Resulting shocked, circularized accretion disk gives rise to thermal emission
- Launches collimated, relativistic jet powering non-thermal radio and (likely X-ray)
- In analogy with AGN, nonthermal component only visible for preferential viewing angles

Outflows II: Fast (but not relativistic)

ASASSN-14li: Radio

Alexander et al., 2016

From broadband radio observations, measure outflow velocity of $\sim 20,000$ km s⁻¹ and E $\sim 10^{48}$ erg

Outflows III: Very low Velocity

ASASSN-14li: X-ray

Miller et al. 2015

Highly ionized gas, close to black hole (varies on few day time scales), velocities of few **hundred** km s⁻¹

Outflows IV: P Cygni profiles

iPTF15af UV Spectra

Cenko et al. in prep.

Broad (~ 10000 km s), blue-shifted absorption of C IV, Si IV, Lyα (?); P Cygni like?

Abundance Patterns: PS1-10jh

- Strong, broad He II
 emission lines, but no
 corresponding Balmer H
 lines
- * H-poor star disrupted?
- Complex photoionization conditions in emitting gas?

Gezari et al. 2012

Variable H-He Ratio in Optical Spectra

Arcavi+ 2014

First UV spectrum of a TDF (Cenko et al. 2016)

First UV spectrum of a TDF (Cenko et al. 2016)

Cenko et al. 2016

No Mg II (and other low ionization lines) in emission or absorption

Cenko et al. 2016

N-rich Quasars: possible TDFs?? N over-abundance due to CNO processing in Sun-like star (Kochanek et al. 2016)

Host Galaxies: Preference for Post-Starbursts

French et al. 2016

Factor of tens to hundreds over-abundant in "post-starburst" galaxies - post mergers?

Conclusions / Remaining Puzzles

- * Why is the UV/optical emission seen from TDFs coming from such a large radius?
- * What dictates the presence / speed of outflowing material in TDFs?
- How does the observed abundance pattern relate to physical conditions in the emitting gas?
- Why do TDFs occur preferentially in post-starburst galaxies?