

© NASA JPL/CalTech

MAGNETIC AGN LUMINOSITIES AND UHECR LUMINOSITIES

Carlos H. Coimbra-Araújo and Rita C. Anjos (Auger) Departamento de Engenharias e Exatas

Universidade Federal do Paraná, Brazil

Other collabs: R. Rocha (UFABC), V. Souza (USP/Auger), D. Supanitsky (UNAM/Auger)

International Astronomical Union Symposium 324 12-16 September 2016 Cankarjev dom, Ljubljana, Slovenia - Different types of extragalactic objects are known to produce TeV gamma-rays.

- Some of these objects are also the most probable candidates to accelerate cosmic rays up to 10^{20} eV.

- It is very well known that gamma-rays can be produced as a result of the cosmic ray propagation through the intergalactic medium.

- These gamma-rays contribute to the total flux observed in the direction of the source.

- Cascading background to produce GeV-TeV gammas: 1) EBL (10-10⁵ GeV gammas); 2) CMB (10⁵-10¹⁰ GeV); 3) Radio background (10¹⁰-10¹³ GeV); see more details in Blumenthal 1970; Puget et al 1976; Kelner & Aharonian 2008, PRD; De Angelis et al 2013, MNRAS.

Production of gammas

ULTRA HIGH ENERGY COSMIC RAYS

- How are they produced?
- Which are the possible main mechanisms?
- How do they acquire their energy?

 Some theories, models and
 → computational simulations present partial answers to those questions.

AGNS AS SOURCES OF UHECRS

- AGN Unification Model successfull, but knowledge about inner mechanisms are in construction:
 - Accretion?
 - Magnetic fields?
 - Jet mechanisms?
 - Particle acceleration mechanisms?
 - ‒ Black hole physics ↔ SMBHs astrophysics?

Zamaninasab et al 2014, Nature

Gouveia dal Pino and Lazarian 2005

UPPER LIMIT ON THE UHECR EMISSION OF INDIVIDUAL AGN SOURCES

 Originally, restrictions in calculation due to presence of the inter and galactic magnetic fields → the reconstructed direction of a charged cosmic ray particle might not point back exactly to its source

OBut, GeV-TeV gamma rays produced by UHECRs are + GeV-TeV not deviated ^{2.7K CMBγ}

Supanitsky and Souza 2013, JCAP Anjos, Souza, Supanitsky 2014, JCAP

1) UHERC + CMB (or EBL) \rightarrow GeV-TeV gammas

2) Such gamma flux can be given in terms of UHECR luminosity by

$$I_{\gamma}(E_{\gamma}) = \frac{L_{CR}}{4\pi D_s^2 (1+z_s) \langle E \rangle_0} K_{\gamma} P_{\gamma}(E_{\gamma})$$

3) See gammas detected by HESS, Fermi-Lat, Magic, Veritas from problable UHECR sources (as AGNs) to constrain UHECR luminosity

$$I_{CR}(E) = \frac{L_{CR}}{4\pi D_s^2 (1+z_s)\langle E\rangle_0} K_{CR} P_{CR}(E) \qquad \text{Flux}$$

$$\int_{V} \text{Secondary gammas due to cosmic ray propagation}$$

$$I_{\gamma}(E_{\gamma}) = \frac{L_{CR}}{4\pi D_s^2 (1+z_s)\langle E\rangle_0} K_{\gamma} P_{\gamma}(E_{\gamma})$$

$$\int_{V} \text{Number of gammas generated per injected cosmic-ray particle (calculated and can be translated to upper limits if}$$

$$I_{\gamma}^{UL}(>E_{\gamma}^{th})$$

$$K_{\alpha} \text{mpert et al 2013 and Supanitsky and Souza 2013 for description of CRPropa}$$

On the other hand, many mechanisms contribute to accelerate particles in AGNs (e.g. Fermi process), but, in last instance, driven by 'magnetic luminosity'. So, we will assume a very simple conversion efficiency such that

To integrate gamma flux, some of the chosen individual gamma sources

NGC 985

NGC 1142

Mrk 520

LEDA 170194

MCG-01-24-012

And 16 more from Fermi-Lat (UL)

NGC 5995

Image credits: aladin.u-strasbg.fr, nasa.gov, dc.zah.uni-heidelberg.de

$$\eta(a)_{pr} = \frac{4\pi D_s^2(1+z_s)}{10(\phi/50)x_a^2 f_a(x_a)\dot{M}c^2} \times \frac{\langle E\rangle_0 I_{\gamma}^{UL}(>E_{\gamma}^{th})}{K_{\gamma}\int_{E_{th}}^{\infty} dE_{\gamma}P_{\gamma}(E_{\gamma})}$$

Coimbra-Araújo and Anjos 2015, PRD

$$x_a = r_g \frac{\Omega_{BH}}{c} = [2(1 + \sqrt{1 - a^2})]^{-1}a$$

$$f_a(x_a) \simeq 1 + 1.4x_a^2 - 9.2x_a^4$$

With a = J/M

						a = 0.45	a = 0.7
Source name	z_s	$\log M_{\odot}$	$\mathbf{L}_{\mathbf{pr}}^{\mathbf{UL}}$ (Proton)	$L_B[erg s]$	$^{-1} \times 10^{45}$]	$\mathbf{L_{CRmin}^{Theory}-L_{CRmax}^{Theory}}$	$\mathbf{L_{CRmin}^{Theory}-L_{CRmax}^{Theory}}$
			$[{\rm erg} {\rm s}^{-1} \times 10^{45}]$	a = 0.45	a = 0.7	$[\text{erg s}^{-1} \times 10^{45}]$	$[\text{erg s}^{-1} \times 10^{45}]$
NGC 985	0.04353	10.6	1.03	5.14	15.54	0.21 - 2.57	0.77 - 2.79
NGC 1142	0.02916	10.7	0.49	6.47	19.57	0.26 - 3.23	0.97 - 3.52
$\fbox{2MASX J07595347+2323241}$	0.03064	10.57	1.01	4.80	14.51	0.19 - 2.40	0.72 - 2.61
CGCG 420-015	0.02995	10.63	0.95	5.51	16.66	0.22 - 2.76	0.83 - 2.99
MCG-01-24-012	0.02136	10.16	0.65	1.86	5.64	0.07 - 0.93	0.28 - 1.02
2MASX J11454045-1827149	0.03616	10.0	1.30	1.29	3.90	0.07 - 0.64	0.19 - 0.70
LEDA 170194	0.04024	10.59	1.48	5.02	15.19	0.21 - 2.51	0.75 - 2.73
NGC 5995	0.02834	9.89	0.90	1.00	3.03	0.04 - 0.51	0.15 - 0.54
Mrk 520	0.02772	10.4	0.98	3.24	9.81	0.13 - 1.62	0.49 - 1.77

Source name	\mathbf{D} [Mpc]	UL: \mathcal{F} (> 0.1 GeV)	L ^{UL} _{pr} (Proton)	$\mathbf{L}_{\mathbf{CR}}^{\mathbf{UL}}$ (Total)
		$[10^{-9} \text{ ph cm}^{-2} \text{ s}^{-1}]$	$[\text{erg s}^{-1} \times 10^{45}]$	$[\text{erg s}^{-1} \times 10^{45}]$
Mrk 1018	181.5	2.1	1.04	-
NGC 985	184.7	1.8	1.03	2.19
NGC 1142	121.5	1.1	0.49	-
2MASX J07595347+2323241	127.7	2.2	1.01	-
Mrk 704	130	2.0	0.91	-
MCG+04-22-042	143.6	1.6	0.75	1.74
Mrk 417	147.4	3.7	1.72	-
ESO 121-IG028	177.8	1.2	0.64	-
ESO 549-G049	111.1	2.5	1.11	-
CGCG 420-015	124.8	2.1	0.95	-
Ark 120	139.7	1.6	0.74	-
MCG-01-24-012	89.0	1.5	0.65	-
Mrk 110	156	1.9	0.90	-
2MASX J11454045-1827149	150.7	2.8	1.30	3.16
LEDA 170194	167.7	3.1	1.48	3.71
NGC 5252	108.4	1.4	0.62	-
Mrk 817	141.5	1.6	1.72	-
NGC 5995	118.1	2.0	0.90	-
Mrk 509	151.6	2.7	1.27	-
Mrk 520	115.5	2.2	0.98	-
Mrk 915	104	2.4	1.06	-
NGC 7603	126.5	2.0	0.91	-

From 95% CL UL Fermi-Lat (ApJS 2010 and 2012)

a = 0.7

Picture in construction, to contain more sources (work in preparation)

See the stability of such Kerr disks in Coimbra-Araújo & Anjos, CQG, 2016

SUMMARY

- Novel method to calculated Lcr upper limits from GeV-TeV gamma upper limits (Supanitsky & Souza 2013; Anjos & Souza 2014)
- Linking Lcr upper limit with Lb by a conversion rate calculated here and developed in C-A, Anjos PRD, 2015; Anjos, C-A, Rocha, Souza, JCAP, 2016
- Since CTA will problably offer very strict upper limits at GeV-TeV, the method presented here can be used in many sources in manner to verify patterns in upper limits of Lb to Lcr conversion rates in function of AGN/BH properties.

At last, not least important, future perspectives: improve the approach for the case of neutrino propagation

Carlos H. Coimbra-Araújo Universidade Federal do Paraná Pioneiro, 2153, 85950-000, Palotina, Brazil

carlos.coimbra@ufpr.br

Thank you!

