The critical role of Gigahertz Peak Spectrum and Compact Steep Spectrum radio sources in

Geoff Bicknell¹, Dipanjan Mukherjee¹, Alex Wagner², Ralph Sutherland¹ Research School of Astronomy & Astrophysics, Australian National

University

2 Center for Computational Sciences, University of Tsukuba, Japan

Radio galaxies and AGN feedback

- Radio-active phase part of the life-cycle of all galaxies
- Significant amount of energy and momentum injected into the ISM during this phase
- Influence on cooling flows used in modelling the galaxy luminosity function (Croton+'06)
- Radio galaxies heat cooling flows prevent further accretion

Feedback in other environments

- ISM in evolving galaxies is inhomogeneous (esp. at z~2)
- AGN feedback is not just a matter of heating the ISM and preventing accretion
- Emphasised by the physics of Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) sources

Outline

- What are GPS and CSS sources?
- Relativistic jet ISM interactions
- Evolution of radio spectrum
- Turnover frequency size relation
- Relevance to AGN feedback

GPS source: PKS 1718-649 Tingay et al. 15

3.6 pc in size Spectral Turnover at ~ 3 GHz

CSS source: 3C303.1; Leahy & Perley '91

Turnover frequency - size relation (O'Dea & Baum '97)

Inverse correlation between turnover frequency and size

GPS and CSS sources represent different evolutionary stages of radio galaxies

Simulations of relativistic jet feedback

- Code: PLUTO Relativistic Hydrodynamics Code
 - Andrea Mignone et al.
- Thermal cooling using MAPPINGS cooling function – Sutherland & Dopita
- Australian National Computational Infrastructure supercomputer
- See Mukherjee, GB, Wagner & Sutherland, MNRAS, 2016 for simulations

Galaxy & ISM - halo + warm clouds

l kpc

10⁷ K

cm⁻³

10⁴ K

cm⁻³

Jet and ISM parameters

Densities: Shirazi+ '14; Sanders+ '16

Settling the turbulent ISM

THE AUSTRALIAN NATIONAL UNIVERSITY

Density evolution - slices of 3D simulations

Surface brightness at 1 GHz

IAU Symposium 324: New Frontiers in Black Hole Astrophysics

GPS and CSS sources

Drill through simulation to determine surface brightness and spectrum

 Low frequency power-law attributed to distribution of freefree optical depths (GB, Dopita, O'Dea 1997)

Synchrotron emissivity

Assume electron energy density and magnetic energy density proportional to total energy density

Electron energy distribution: $N(\gamma) = K\gamma^{-a}$ $a = 2\alpha + 1$

Free-free absorption

along rays through volume

Spectral evolution for P_{jet}=10⁴⁵ ergs/s n_{w,0} = 300 cm⁻³

- Peak moves to lower
 frequencies as source
 evolves Effect of
 decreasing density and
 path length
- Spectral slope flattens
 Effect of increasing
 dispersion in optical
 death

Spectrum and optical depth

IAU Symposium 324: New Frontiers in Black Hole Astrophysics

Turnover frequency - size relation

Summary

- GPS and CSS sources strongly related to AGN feedback in early stages of galaxy evolution
- Low-powered jets important FRO sources?
- Low frequency turnover plausibly related to free-free absorption by inhomogeneous ISM
- Initial density and velocity dispersion of ISM similar to values inferred from optical observations
- Radio spectrum provides independent information on ISM density and spectrum of density fluctuations – important for modelling feedback

Additional slides

Most important range of 1.4 GHz radio power around 10²⁵ W Hz⁻¹

Corresponds to jet power ~ 10⁴³⁻⁴⁵ ergs s⁻¹

Velocity dispersion

•Initial turbulent set up: lognormal in density, Gaussian in velocity Cloud-cloud collisions, shearing and cloud merger result in elongated filaments •Settled until σ 150-100 km/s

e.g. Förster-Schreiber+ '09

Structure from temperature and pressure

Temperature

Pressure

Surface brightness and optical depth

 $\Delta \tau \sim 1 - 2.5$

