AGN Duty Cycles in the Illustris Simulation

Colin DeGraf University of Cambridge

IAU Symposium

September 12-16, 2016

Outline

- Simulation background
- AGN duty cycle
 - Dependences on $M_{\rm BH},\,L_{\rm AGN},\,z$
- Clustering predicted duty cycle
 - Implications of host mass

Illustris Simulation

- Run with moving mesh code AREPO
- •Volume: (106.5 Mpc)³
- Minimum cell size: ~50pc
- Typical cell: m_{gas} ~1.26*10⁶ M_{sun}
- SF+feedback, stellar evolution, gas recycling and enrichment, galactic outflows, timedependent UV background

BH implementation

BH seeded to DM halos

 $M_{seed} \sim 10^5 h^{-1} M_{sun}, M_{h,threshold} \sim 5*10^{10} h^{-1} M_{sun}$

Bondi-like accretion

with Eddington limit and pressure criterion

$$\dot{M} = \frac{4 \pi \alpha G^2 M_{BH}^2 \rho}{c_c^3}$$

• 3-component feedback model

Quasar Mode: Efficient accretion; thermal feedback Radio Mode: Inefficient accretion; energy inserted as radio bubbles

Radiative feedback: Modified photo-ionization and photo-heating rates near BH

Quasar Luminosity Function

Reproduces
 observed
 luminosity function

Sijacki+ 2015

Typical BH Growth

 Sample growth histories using Bondi-like accretion

• Significant variation in accretion rate/luminosity

• Final mass constrained by self-regulation

Di Matteo+ 2008

Eddington Fraction Distribution

• High-z distribution peaks at higher λ_{Edd}

• Sharper Eddington ratio peak \rightarrow less scatter in $L_{\text{BH}}\text{-}M_{\text{host}}$ relation

Eddington Fraction Distribution

• High-z distribution peaks at higher λ_{Edd}

• Sharper Eddington ratio peak \rightarrow less scatter in $L_{\text{BH}}\text{-}M_{\text{host}}$ relation

N

f_{duty}=

• Well fit by single logistic function $(I_{I})^{-1.27}$

$$f_{duty} = \frac{1}{1 + e^{-k(z - z_0)}} \frac{k = 0.87 \left(\frac{L_{BH,min}}{10^{43} erg/s}\right)}{z_0 = 3.13 \left(\frac{L_{BH,min}}{10^{43} erg/s}\right)^{0.338}}$$

- Fitted for 0<z<4, but extends to higher-z
- f_{duty} drops for brightest objects
 - Due to limits on Eddington limit

• Well fit by single logistic function $(L_{RHmin})^{-1.27}$

$$f_{duty} = \frac{1}{1 + e^{-k(z - z_0)}} \frac{k = 0.87 \left(\frac{L_{BH,min}}{10^{43} erg/s}\right)}{z_0 = 3.13 \left(\frac{L_{BH,min}}{10^{43} erg/s}\right)^{0.338}}$$

- Fitted for 0<z<4, but extends to higher-z
- f_{duty} drops for brightest objects
 - Due to limits on Eddington limit
 - Not seen when selected by Eddington fraction instead

Duty Cycle Dependencies

- \bullet Lower duty cycle for higher $\rm L_{AGN}$ and lower $\rm M_{BH}$
- Smooth dependencies
- Dependencies are weaker at higher-z
 - Generally higher
 Eddington ratios

Halo Duty Cycles

• Defined as:
$$f_{h,duty} = \frac{N_h(>L_{BH,min})}{N_h(M_h>M_{h,min})}$$

• Distinct from BH duty cycle, as halos may host multiple BHs

 \bullet Slow decrease in $f_{\rm duty}$ with time

- Slow decrease in f_{duty} with time
- Halo duty cycle matches only at high-z

- Slow decrease in f_{duty} with time
- Halo duty cycle matches only at high-z
- •Fixed-mass halo duty cycle well matches at all z

Clustering-predicted Duty Cycle

$$f_{duty} = \frac{N_{BH}(>L_{BH,min})}{N_h(M_h>M_{h,min})} = \frac{\int_{L_{BH,min}}^{\infty} \Phi(L) dL}{\int_{M_{h,min}}^{\infty} \frac{dn}{dM} dM}$$

• N_{BH} (> L_{BH,min}): Observed count

- N_h (> $M_{h,min}$): From halo mass function
- M_{h,min}: Minimum host halo mass, based on clustering amplitude

$$b_{BH} \left(> L_{BH,min} \right) = \frac{\int_{M_{h,min}}^{\infty} b(M) \frac{dn}{dM}}{\int_{M_{h,min}}^{\infty} \frac{dn}{dM} dl}$$

- Slow decrease in f_{duty} with time
- Halo duty cycle matches only at high-z
- •Fixed-mass halo duty cycle well matches at all z

 Discrepancy caused by overestimate of halo mass + steep halo mass function

$$f_{duty} = \frac{\int_{L_{BH,min}}^{\infty} \Phi(L) dL}{\int_{M_{h,min}}^{\infty} \frac{dn}{dM} dM}$$

Host mass distribution

Host mass distribution

Host mass distribution

• Clusteringestimated f_{duty} is poor at low-z

- Discrepancy
 between AGN
 clustering and
 host halos
- Extended tail of host halo masses

Conclusions

- Duty cycle evolves smoothly with z, M_{BH}, L_{cut}
- BH duty cycle matches halo duty cycle for fixed host mass
- Clustering \rightarrow duty cycle predictions only valid at high-z
 - Clustering predicted masses inaccurate at low-z