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Non-Singular Method of Fundamental Solutions for Problems 
in Micromechanics  
 
Abstract 

 

The research described in this dissertation is focused on development of a novel 

Method of Fundamental Solutions (MFS) for solving two-dimensional linear 

elasticity problems. The purpose of the developments is the use of the developed 

method for numerical modelling and simulation of deformation of microstructure of 

multi-grain materials such as metals. This approach enables to calculate the 

deformation of multi-grain materials as a function of the shape and mechanical 

properties of each of the grains that can be anisotropic and differently oriented. 

Respectively, the macroscopic mechanical response can be obtained from the defined 

properties of its microscopic constituent parts. The novelty of the developed 

approach is in the removal of the fictitious boundary where in MFS the poles of the 

fundamental solution are placed. The fictitious boundary represents the main 

drawback of MFS. This drawback makes the application of MFS to multi-grain 

materials very complicated. With the goal to make the artificial boundary coincide 

with the physical boundary of the grain are the singular point sources of the 

fundamental solution replaced by distributed sources over circular discs around the 

singularity. The magnitude and the shape of the fundamental solution inside the disk 

is adjusted by the average value of the domain integral of the fundamental solution 

over the disk and by coinciding of the shape of the related function with the 

fundamental solution and its first derivatives on the border of the disc. 

 

In case of displacement (Dirichlet) boundary conditions, the values of distributed 

sources are calculated directly and analytically for isotropic problems and 

numerically for anisotropic problems. In case of traction (Neumann) boundary 

conditions, the respective desingularized values of the derivatives of the fundamental 

solution in the coordinate directions, as required in the calculations, are calculated 

indirectly from the construction of two reference solutions of the linearly varying 

simple displacement fields in the first variant of the novel method, termed Non-

singular Method of Fundamental Solutions (NMFS). However on the expense of 

solving three times the systems of algebraic equations in comparison with only one 

solution in MFS. In addition, the related reference fields have to be carefully chosen 

in order to get the proper solution. In the second variant of the novel method, termed 

Improved Non-singular Method of Fundamentals Solutions (INMFS), the respective 

desingularized values of the derivatives of the fundamental solution in the poles are 

calculated from the assumption that the sum of the forces on the body should vanish 

in mechanical equilibrium. The system of algebraic equations is solved only once as 

in the MFS and there is no need to employ the two reference solutions as in NMFS. 

A free parameter – radius of the desingularization disk appears in both non-singular 

methods. It turns out that a suitable choice for this parameter is around 20% of the 

distance between the neighbouring nodes on the boundary. 

 

In order to demonstrate the feasibility, accuracy and convergence of the newly 

developed methods, the NMFS and the INMFS solutions are compared to the MFS 



 

solution and analytical solutions for a spectra of plane strain problems. Analysis of 

the method includes isotropic and anisotropic materials, single and multi-grain 

problems. Special attention is devoted to problems with elastic or rigid inclusions as 

well as voids. 

 

Both, the NMFS and the INMFS methods, turn out to give similar results than the 

classical MFS method in all spectra of the performed tests. Because INMFS is 

simpler and more efficient than the NMFS, INMFS is a preferred method for use. 

The dissertation is concluded with simulation of deformation of a piece of a realistic 

microstructure of a spring steel 51CrMoV4 on a square 50μm with 24 grains. 

 

The represented work display a first use of MFS for solid mechanics problems 

without the fictitious boundary. The developed approach is clearly better than the 

classical finite element method for this type of problems, since discretisation is 

performed only on the boundary. The newly generated knowledge will be 

incorporated in microstructure deformation model, coupled with the macroscopic 

simulation system for continuous casting, hot rolling and heat treatment of metals. 

 

Key words:  

Micromechanics, microstructure, isotropic elasticity, anisotropic elasticity, plane 

strain problems, Method of Fundamental Solutions, displacement boundary 

conditions, traction boundary conditions, fundamental solution, Non-Singular 

 

 

 

 

  



 

 

Nesingularna metoda fundamentalnih rešitev za 
mikromehanske probleme 
 
Povzetek 

 

Raziskave, opisane v disertaciji, so osredotočena na razvoj nove Metode 

Fundamentalnih Rešitev (MFS) za reševanje dvo-dimenzionalnih linearnih elastičnih 

problemov. Namen razvoja nove metode je njena uporaba za numerično modeliranje 

in simulacijo deformacije mikrostukture snovi z več zrni, kot so na primer kovine. Ta 

omogoča izračun deformacije zrnatega materiala kot funkcijo oblike in mehanskih 

lastnosti posameznega zrna, ki so lahko anizotropna in različno orientirana. Zato 

lahko makroskopske mehanske lastnosti materiala izračunamo iz definiranih lastnosti 

njihovih mikroskopskih delov. Novost razvitega računskega postopka je odstranitev 

fiktivnega roba, kjer so pri MFS postavljeni poli fundamentalne restive. Fiktivni rob 

predstavlja glavno slabost MFS. Zaradi te slabosti je uporaba MFS za zrnate 

materiale zelo zapletena. S ciljem narediti sovpadanje fiktivnega roba s fizikalnim 

robom so singularni točkovni izvori fundamentalne reštive zamenjani s 

porazdeljenimi izvori po krožnih diskih okoli singularnosti. Velikost in oblika 

fundamentalne rešitve znotraj diska je prilagojena povprečni velikosti območnega 

integrala fundamentalne reštive po disku in z sovpadanjem oblike funkcije znotraj 

diska s fundamentalno rešitvijo in njenimi prvimi odvodi na meji diska. 

 

V primeru robnih pogojev premika (Dirichletovi robni pogoji) so vrednosti 

distribuiranih izvorov izračunane direktno in analitično za izotropne probleme in 

numerično za anizotropne probleme. V primeru obremenitvenih robnih pogojev 

(Neumanovi robni pogoji) so desingularizirane vrednosti odvodov fundamentalne 

reštive v smeri koordinatnih osi, kot jih potrebujemo v izračunih, v prvi varianti nove 

metode, ki jo imenujemo Nesingularna metoda fundamentalnih rešitev (NSMFS), 

izračunane nedirektno iz konstrukcije dveh referenčnih rešitev linearno 

spremenljivega preprostega polj premikov. Vendar na račun trikratnega računanja 

sistema nastopajočih algebrajskih enačb, namesto samo enega izračuna kot v primeru 

MFS. Dodatno pa morajo biti referenčna polja skrbno izbrana za pravilno rešitev. V 

drugi varianti nove metode, ki jo imenujemo Izboljšana nesingularna metoda 

fundamentalnih rešitev (INMFS) pa so desingularizirane vrednosti odvodov 

fundamentalne rešitve v polih izračunane na podlagi predpostavke, da mora biti vsota 

vseh sil na telo v ravnovesju enaka nič. Sistem algebrajskih enačb v tem primeru 

rešimo samo enkrat, tako kot pri MFS, ne potrebujemo pa dveh referenčnih rešitev 

kot pri NMFS. V obeh nesingularnih metodah nastopa prosti parameter - polmer 

desingularizacijskega diska. Izkaže se, da dobimo natančne rezultate, če za polmer 

izberemo okoli 20% razdalje med sosednjimi točkami na robu. 

 

S ciljem demonstracije izvedljivosti, natančnosti in konvergence novo razvite metode, 

sta NMFS in INMFS rešitvi primerjani z MFS in analitičnimi rešitvami za spekter 

problemov ravninske deformacije. Analiza metode vsebuje izotropne in anizotropne 

materiale, probleme na enem in več območjih. Posebna pozornost je namenjena 

poblemom z elastičnimi in togimi vključki in prazninami. 

 



 

NMFS in INMFS dajeta podobne razultate kot klasična MFS na celotnem spektru 

izdelanih testov. Zaradi tega, ker je INMFS bolj preprota in bolj efektna kot NMFS, 

je INMFS primerna izmed obeh. Disertacijo sklenemo z deformacijo dela realistične 

mikrostukture vzmetnega jekla 51CrMoV4 na kvadratu dimenzije 50μm s 24 zrni. 

 

Predstavljeno delo prikazuje prvo uporabo MFS brez fiktivnega roba za probleme 

mehanike trdnin. Metoda bo v prihodnosti dopolnjena tudi za plastično obnašanje 

materiala in uporabljena v modelu deformacije mikrostrukture, ki bo sklopljen z 

makroskopskimi simulacijami kontinuirnega ulivanja, vročega valjanja in toplotne 

obdelave kovin. 

 

Ključne besede: 

Mikromehanika, mikrostruktura, izotropna elastičnost, anizotropna elastičnost, 

ravninski deformacijski problemi, metoda fundamentalnih rešitev, robni pogoji 

premika, robni pogoji obremenitve, fundamentalna rešitev, nesingularna metoda 

fundamentalnih rešitev, izboljšana nesingularna metoda fundamentalnih rešitev. 
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1.  Introduction 

1.1  Overview of Dissertation 

Micromechanics [Qu and Cherkaoui (2006)]
 
represents analysis of composite or 

heterogeneous materials on the level of the individual constituent grains that form 

these materials. One of the main tasks of micromechanics of materials is localization, 

which aims at evaluating the local (stress and strain) fields in the phases for given 

macroscopic load states, phase properties, and phase geometries. Such knowledge is 

especially important in understanding and describing material elastic and plastic 

deformation damage and failure. The micromechanics of materials is mostly based 

on continuum mechanics principles. The computational solution of continuum 

micromechanics usually involves Finite Difference Method (FDM) [Mitchell and 

Griffiths (1980)], Finite Volume Method (FVM) [Patankar (1980)], Finite Element 

Method (FEM) [Zienkiewicz and Taylor (2000)], and Boundary Element Method 

(BEM) [Wrobel (2002); Aliabadi (2002)]. 

 

The BEM is a numerical computational method for solving linear Partial Differential 

Equations (PDE) which have been formulated as integral equations (i.e. in boundary 

integral form). The integral equation may be regarded as an exact solution of the 

governing partial differential equation. The BEM attempts to use the given boundary 

conditions to fit the boundary values into the integral equation, rather than values 

throughout the space defined by a partial differential equation. Once this is done, in 

the post-processing stage, the integral equation can then be used again to calculate 

numerically the solution directly at any desired point in the interior of the solution 

domain. Comparing to the more popular numerical methods, such as FEM and FDM, 

which can be classified as the domain methods, the BEM distinguish itself as a 

boundary method, meaning that the numerical discretization is conducted at reduced 

spatial dimensions. This reduced dimension leads to smaller linear systems, less 

computer memory requirements, and sometimes more efficient computation. This 

effect is most pronounced when the domain is unbounded. Unbounded domain needs 

to be truncated and approximated in domain methods. The BEM, on the other hand, 

automatically models the behaviour at infinity without the need of deploying a mesh 

to approximate it. 

 

In scientific computation and simulation, the Method of Fundamental Solutions 

(MFS) [Chen, Karageorghis and Smyrlis (2008)] is getting a growing attention. The 

method also belongs to boundary methods. It is referred to by many other names 

such as the F-Trefftz method [Golberg and Chen (1997)], charge simulation method 
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[Golberg and Chen (1998)] or singularity method [Chen, Karageorghis and Smyrlis 

(2008)]. The main idea of MFS consists of approximating the solution of the partial 

differential equation by a linear combination of fundamental solutions, defined in 

source points. The expansion coefficients of the solution in MFS are determined so 

that the solution satisfies the boundary condition with the help of direct collocation 

[Fairweather and Karageorghis (1998); Balakrishnan and Ramachandran (2001)], 

least squares approximation [Chen (1995)], or by an integral fit of the boundary data 

[Balakrishnan and Ramachandran (2001); Karageorghis (1987)]. The fundamental 

solution is for certain PDE’s singular in the source points and this is the reason why 

the source points have to be located outside the domain in the classical MFS for such 

situations. Then, the original problem is reduced to determining the unknown 

coefficients of the fundamental solutions and the coordinates of the source points by 

requiring the approximation to satisfy the boundary conditions and hence solving a 

non-linear problem. If the source points are a priori fixed (on a fictitious boundary) 

then the coefficients of the approximation are determined by solving a linear problem. 

In contrast to the BEM, the MFS avoids numerical integration of singular 

fundamental solution and is an inherent meshless method. 

 

In the traditional MFS, the fictitious boundary, positioned outside the problem 

domain, is required to place the source points. This avoids the singularity of the 

solution at the boundary which would prevent the proper compliance with the 

boundary conditions. The determination of the distance between the real boundary 

and the fictitious boundary is based on experience and therefore troublesome. In 

recent years, various efforts have been made, aiming to remove this drawback of the 

MFS, so that the source points can be placed on the real boundary directly. The 

present dissertation essentially develops such a method for solution of a class of 

micromechanics problems. 

1.2  The Meshless Methods 

In the field of numerical simulation methods, meshless methods, sometimes named 

also meshfree or mesh reduction methods, are those that do not require that a mesh 

connects the data points of the simulation domain. Meshless methods enable the 

simulation of some otherwise difficult types of problems, at the cost of extra 

computing time and programming effort. There exist several meshless methods such 

as Element-free Galerkin Methods (EFGM) [Belytschko, Lu and Gu (1994)], the 

Meshless Local Petrov-Galerkin (MLPG) method [Atluri and Shen (2002)], Finite 

Mass Method (FMM) [Gauger, Leinen and Yserentant (2000) ], Smoothed Point 

Interpolation Method (S-PIM) [Liu (2009)], Meshfree local Radial Point 

Interpolation Method (RPIM) [Liu (2009)], Local Radial Basis Function Collocation 

Method (LRBFCM) [Šarler and Vertnik (2006)], Repeated Replacement Method 

(RRM) [Walker (2012)], Radial Basis Integral Equation Method [Ooi and Popov 

(2012)]. A practical overview of meshless methods (for solid mechanics) based on 

global weak forms is given by [Nguyen, Rabczuk, Bordas and Duflot (2008)] and in 

the book [Chen, Lee and Eskandarian (2006)]. This dissertation is focused on 

development of modified Method of Fundamental Solutions, based on the classical 

MFS. 
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1.2.1  Method of Fundamental Solutions 

The ideas behind the MFS have been around for a few decades and were developed 

primarily by [Kupradze and Alexidze (1964)] in the late 1950s and early 1960s. 

However, the method was proposed as a computational technique much later by 

[Mathon and Johnston (1977)] in the late 1970s, followed by a number of papers by 

Mathon, Johnston and Fairweather with applications. Slowly, but surely, the MFS 

become a useful tool for solution of a large variety of physical and engineering 

problems see [Fu, Chen and Yang (2009); Chen, Lin and Wang (2011); Chen and 

Wang (2010); Jiang and Chen (2011)]. 

 

A major obstacle was overcome when, in the 1990s, [Golberg and Chen (1994); 

Golberg, Chen, Bowman and Power (1998)] extended the MFS to deal with 

inhomogeneous equations and time-dependent problems. Recent developments 

indicate that the MFS can be used to solve partial differential equations with variable 

coefficients [Fan, Chen and Monroe (2009)]. For instance, Laplace equation 

[Bogomolny (1985); Katsurada and Okamoto (1996); Mathon and Johnston (1977)], 

biharmonic [Karageorghis and Fairweather (1987)], elastostatic problems [Poullikkas, 

Karageorghis and Georgiou (2002)], wave scattering problems [Kondapalli, Shippy 

and Fairweather (1992a); Kondapalli, Shippy and Fairweather (1992b)], inverse 

obstacle scattering problems [Karageorghis and Lesnic (2011)]，inverse problems of 

Laplace equation [Young, Tsai, Chen, Fan (2008)], multidimensional inverse heat 

conduction problems [Hon and Wei (2005)]. More recently, the MFS has 

successfully been applied to approximate the solutions of non-homogeneous linear 

and nonlinear Poisson equations [Balakrishnan and Ramachandran (2001); Golberg 

(1995)]. Details can be found in the review papers of [Fairweather and Karageorghis 

(1998); Golberg and Chen (1998); Kołodziej (1987; 2001)], and also in the excellent 

book written by [Golberg and Chen (1997)]. The expansion coefficients in the 

solution are determined so that the solution satisfies the boundary condition with the 

help of direct collocation [Chen (1995); Balakrishnan and Ramachandran (2001)], 

least squares fit [Karageorghis and Fairweather (1987)] or by an integral fit of the 

boundary data [Herrera (1984); Zielinski and Herrera (1987)].  

The method has been widely used for the solution of problems in linear elasticity. 

The first application of the MFS for elasticity problems can be found in the paper 

[Kupradze and Aleksidze (1964)], whereas a theoretical analysis and density results 

for problems of linear elasticity may be found in the papers [Kupradze (1964); 

Smyrlis (2009)]. The solution of anisotropic elasticity problems was considered in 

[Berger and Karageorghis (2001); Maharejin (1985)]. In the paper of [Marin and 

Lesnic (2004)], inverse problems in planar elasticity were considered, whereas 

axisymmetric elastic problems were studied in [Redekop and Thompson (1983); 

Karageorghis and Fairweather (2000)]. The MFS has been applied to the 

computation of stress intensity factors in linear elastic fracture mechanics [Berger, 

Karageorghis and Martin (2005); Karageorghis, Poullikkas and Berger (2006)] as 

well. The MFS was applied to thermo-elasticity problems in [Aleksidze (1991); 

Kupradze, Gegelia, Basheleshvili and Burchuladze (1976)]. Further applications of 

the MFS to elasticity problems can be found in [Patterson and Sheikh (1982); 

Redekop (1982); Burgess and Maharejin (1984); Redekop and Cheung (1987); 

Raamachandran and Rajamohan (1996); Fenner (2001); Poullikkas, Karageorghis 
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and Georgiou (2002); Tsai (2007); Marin (2011)]. Multi-domain (multi-zone) 

formulations play an important part in numerical analysis when dealing with 

problems involving interfaces or dissimilar materials, such as composite materials, 

etc. [Berger and Karageorghis (2001)] present a MFS solution of a multi-domain 

anisotropic elasticity problem. 

1.2.2  Modified Method of Mundamental Solutions 

In recent years, various efforts have been made, aiming to remove the fictitious 

boundary of the MFS, so that the source points can be placed on the real boundary 

directly. [Young, Chen and Lee (2005); Young, Chen, Chen and Kao (2007); Chen, 

Kao, Chen, Young and Lu (2006)] proposed to place the source points on the 

boundary in the MFS. They introduce novel ways to determine the diagonal 

collocation matrix coefficients. The diagonal coefficients were determined directly 

for simple geometries or by using the results from the BEM, based on the fact that 

the MFS and the indirect boundary integral formulation are similar in nature. In their 

approach, information of the neighbouring points before and after each source point 

is needed, in order to form line segments for integrating the kernels to obtain the 

diagonal coefficients. This is essentially the same information of the element 

connectivity as in a BEM mesh. [Šarler (2009)] proposed a similar modified MFS, 

where the diagonal terms are determined by the integration of the fundamental 

solution on the line segments formed by using neighbouring points, and the use of a 

constant solution to determine the diagonal coefficients of the derivatives of the 

fundamental solution in different coordinate directions. This approach is very stable, 

but it amounts to solve the problem twice. [Chen and Wang (2010)] proposed a 

similar method for determining the diagonal coefficients in the modified MFS by 

applying a known solution inside the domain, so that the diagonal coefficients from 

both the fundamental solution and its derivatives can be determined indirectly, 

without using any element or integration concept. Again, this approach is appealing, 

stable and accurate, but it is costly for solving large-scale problems due to the need 

to solve the problem twice. The solution also depends on the choice of the reference 

points. [Gu, Chen and Zhang (2011)] applied the singular boundary method to two-

dimensional (2D) elasticity problems, in which they use an inverse interpolation 

technique to regularize the singularity of the fundamental solution of the equation 

governing the problem of interest. [Chen, Lin and Wang (2011)] developed the 

regularized meshless method also for the nonhomogeneous problems in conjunction 

with the dual reciprocity technique in the evaluation of the particular solution. [Liu 

(2010)] recently presented a new boundary meshless approach based on the modified 

MFS that has no fictitious boundaries and singularities. In the new approach, the 

concentrated point sources are replaced with area-distributed sources covering the 

source points for 2D problems. These area-distributed sources represent analytical 

integration of the original singular fundamental solution, so that they preserve the 

advantage of diagonal dominance for the system of equations, while they have no 

troublesome singularity issues. [Liu (2010)] called the method boundary distributed 

source (BDS) method. [Liu (2010)] used the approach of [Šarler (2009)] to determine 

the diagonal coefficients of the derivatives of the fundamental solution. Liu’s 

approach has been recently extended to solve porous media problems with moving 

boundaries [Perne, Šarler and Gabrovšek (2012)]. But the BDS can’t at the present 

solve the void, elastic inclusions and rigid inclusion micromechanics problems 
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[Dong and Atluri (2011a); Dong and Atluri (2011b); Dong and Atluri (2012); Dong 

and Atluri (2013)]. [Kim (2013)] very recently improved the BDS for Laplace 

equation by using the fact that the boundary integration of the normal gradient of the 

potential should vanish to determine the diagonal element for the Neumann boundary 

conditions. 

1.3 The Goals of the Dissertation 

The dissertation deals with the improvements of the MFS for solid mechanics 

problems and its use in micromechanics. The main idea through all the work is to 

remove the fictitious boundary of the MFS. However, main aspects of the method 

development, which should be met to the largest possible extents, are the accuracy 

and the stability. In this work, two new method formulations, Non-Singular Method 

of Fundamental Solutions (NMFS) and Improved Non-Singular Method of 

Fundamental Solutions (INMFS) are originally developed and presented. In order to 

assess the proposed methods, a detailed analysis regarding to all newly introduced 

features is done. From the analysis of the results it is evident that not all method 

configurations are suitable for all problems and regimes and so the optimal ranges of 

all numerical free parameters are proposed based on the numerical experiments. 

Application of this novel method to industrial micromechanics problems is very 

important and promising, since the method reduces the amount of discretisation, 

needed in classical mesh based methods. It will most probably evolve into a new 

powerful tool for engineering design, fabrication, and analysis of a wide range of 

materials including polycrystalline, composite, geotechnical, biological, and 

electronic materials. Optimum microstructures can be, by use of modelling, 

forecasted rather than found by trial and error. Fracture and fatigue of solids and 

structures, martensitic transformations, interphases in composites, and dispersion 

hardening of alloys are examples of the phenomena that might be tackled by the 

developed method in the future. 

 

Chapter 2, that follows the present introduction, describes the physical background of 

the dissertation with basic definitions of stress, strain, traction, displacement, and the 

relationship of these elements in the linear elasticity theory in Cartesian coordinate 

system. The equations of equilibrium are derived from the balance of the stresses. 

The Hooke’s law in an elastic material is elaborated through stiffness and 

compliance matrices. Different material behaviour reflects in the number of 

independent elastic constants. Anisotropic triclinic materials have 21 independent 

coefficients; monoclinic materials have 13 independent coefficients; orthotropic 

materials have 9 independent coefficients; hexagonal materials have 7 independent 

coefficients; cubic materials have only 3 independent coefficients. For isotropic 

materials, the coefficients only depend on the Young’s modulus and the Poisson’s 

ratio. When a two-dimensional anisotropic deformation is considered in plane stress 

and plane strain cases, the number of elastic constants is reduced to a maximum of 9. 

 

Chapter 3 introduces the classical MFS for isotropic and anisotropic elastic problems. 

Each of the fundamental solutions contains two points, the field point and the source 

point. In order to avoid the singularity, the source point should be put outside of the 



Introduction 

6 

physical domain to avoid the coincidence with the collocation points. Fundamental 

tractions are calculated from the relationships involving displacement, strain and 

stress. An approximate solution of the governing equation is obtained by a linear 

combination of fundamental solutions. At the same time, the corresponding 

approximating traction was obtained from a linear combination of fundamental 

tractions. The coefficients in the linear combination of fundamental solutions and 

fundamental tractions are obtained from the systems of algebraic equations based on 

satisfaction of the the known Dirichlet, Neumann or mixed boundary conditions at 

the boundary. The fundamental solution for isotropic elastic problems is given in an 

exact expression with Young’s modulus and Poisson’s ratio. The fundamental 

solution of anisotropic elastic problems is given as a real part of a first order complex 

polynomial. The coefficients of polynomial are determined by solving a six-order 

equation, originating from a zero determinant of a six-order matrix. The elements of 

the matrix stem from the elements of the stiffness metrix. There are three pairs of 

complex roots for the six-order equation. The three roots with positive imaginary 

parts are the coefficients of the complex polynomial. Two of the three roots are used 

for analysis of the plain strain deformation. 

 

Chapters 4 and 5 represent the formulation of NMFS for isotropic and anisotropic 

elastic problems, respectively. It is based on the classical MFS with regularization of 

the singularities. This is achieved by replacement of the concentrated point sources 

by distributed sources over circular discs around the singularity, as originally 

suggested by [Liu (2010)] for potential problems. The desingularisation for isotropic 

problems can be calculated analytically. But the disingularisation for anisotropic 

problems can’t be obtained in a closed form. The numerical evaluation is performed 

respectively. In case of the displacement boundary conditions, the values of 

distributed sources are calculated directly and analytically. In case of traction 

boundary conditions, the respective desingularized values of the derivatives of the 

fundamental solution in the coordinate directions, as required in the calculations, are 

calculated indirectly from the considerations of two reference solutions of a linearly 

varying simple displacement fields. Respectively, the system of algebraic equations 

has to be solved three times. This novel method modifies MFS in such a way that the 

fictitious boundary is not needed any more. Two examples for isotropic problems are 

divided into four cases and presented in Chapter 4. Two examples for anisotropic 

problems are divided into five cases and presented in Chapter 5. 

 

Chapter 6 is focused on the Improved Method of Fundamental Solutions (INMFS) 

for isotropic and anisotropic elastic problems. Because of the limitations of NMFS, 

that does not perform well for inclusions and voids problems and because of the 

computational effort needed for solving the three systems of algebraic equations, the 

INMFS is developed. This method is based on the idea of [Kim (2013)] for potential 

problems. In steady state potential problems, the balance of the derivatives of the 

potential field values at the boundary should be zero. However, in the present solid 

mechanics problems, the balance of the tractions on the boundary should be zero. 

This idea, together with the assumption of the constant value of the traction near the 

boundary node allowed for a simple calculation of the diagonal elements of the 

matrix of fundamental tractions for the Neumann boundary conditions. From this 

consideration, the values of the fundamental tractions in singular points are obtained. 
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This novel INMFS represents an effective upgrade of NMFS for problems with 

inclusions and voids. INMFS method reduces the computation time of NMFS 

method since the system of equations has to be solved only once instead of three 

times. Five examples for isotropic and anisotropic problems are divided into fourteen 

cases and represented in Chapter 6. 

 

Chapter 7 demonstrates the use of the NMFS and the INMFS in multi-body problems 

in contact. Both methods turn out to give similar results than the MFS in all spectra 

of performed tests except in the void/inclusion problem for NMFS. The lack of the 

artificial boundary is particularly advantageous when using both novel methods in 

multi-body problems. A micromechanics simulation of a deformation of a peace of a 

realistic microstructure is shown in this chapter. Five examples for isotropic and 

anisotropic problems are divided into twelve cases and represented in Chapter 7. 

 

In the final chapter with the conclusions, an overview of the performed work is given, 

together with: (I) advantages of research given in the dissertation, of which the most 

important is the lack of artificial boundary, (II) originality of the dissertation, of 

which the most important scientific aspect is the development and the application of 

NMFS and INMFS for isotropic and anisotropic elastic problems, (III) engineering 

impact of dissertation, of which the most important aspect is the application to 

micromechanics, and (III) plans for future work of which the most important is the 

upgrade of the method to plasticity. 
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2.  Elements of Elasticity Theory 

2.1  Introduction 

This chapter introduces the physical background of the dissertation with basic 

definitions of stress, strain, traction, displacement, and the relationship of these 

elements in the linear elasticity theory in Cartesian coordinate system. The equations 

of equilibrium are derived from the balance of the stresses. The Hooke’s law in an 

elastic material is elaborated through stiffness and compliance matrices. Different 

material behaviour reflects in the number of independent elastic constants. 

Anisotropic triclinic materials have 21 independent coefficients; monoclinic 

materials have 13 independent coefficients; orthotropic materials have 9 independent 

coefficients; hexagonal materials have 7 independent coefficients; cubic materials 

have only 3 independent coefficients. For isotropic materials, the coefficients only 

depend on the Young’s modulus and the Poisson’s ratio. When a two-dimensional 

anisotropic deformation is considered in plane stress and plane strain cases, the 

number of elastic constants is reduced to a maximum of 9. At last, anti-plan 

deformation is described and compared with in-plane situations. 

2.2  Basic Definitions and Comments 

In this section, stress, displacement and strain are introduced. The equations of 

equilibrium for stress are presented in Cartesian coordinate system. 

2.2.1  Cartesian Coordinate System 

In this dissertation, we will exclusively use Cartesian coordinate system , ,x y z  with 

orthonormal base vectors xi , yi  and zi  and coordinates xp , yp  and zp  of point P  

with position vector p . We consider a solid in domain   with boundary  . See 

Figure 2.1. 
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Figure 2.1: Cartesian coordinate system. 

2.2.2  Stress 

Consider an arbitrary shaped body, as illustrated in Figure 2.2. The body is in 

equilibrium under the action of externally applied forces 1 2, , F F . It is assumed that 

the body is continuously deformable so that the forces are transmitted throughout its 

volume. At an internal point with position vector o , there is a resultant force F , 

which may be considered as being uniformly distributed over a small area A . The 

internal force per unit area is called stress  , and is given by 

 .
F

A





  (2.1) 

In the limit, 

  (2.2) 

Generally, the force can be resolved into normal nF  and tangential tF  components 

as shown in Figure 2.3. The normal of direct stress associated with these components 

is defined as 

 
0

lim , n n
n

A

F dF

A dA






 
  

 
 (2.3) 

and a shear stress is defined by  

 
0

lim . t t
t

A

F dF

A dA






 
  

 
 (2.4)

0
lim .
A

F dF

A dA






 
  

 
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Figure 2.2: Internal force F  at a point in a body.  
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O  

 

Figure 2.3: Internal force components at a point. 

2.2.3  Tractions  

Equilibrium must be satisfied at all locations on the boundary of the body where the 

components of tractions (surface forces per unit area) are xt  and yt . For the 

triangular element of Figure 2.4 at the boundary of a two-dimensional body of unit 

thickness, the tractions on element AB  of the boundary must be in equilibrium with 

internal forces on internal faces AC  and CB . 

 

Summing up the forces in the x  direction, we have 

 0.      x xx yxt s y x  (2.5) 

Taking the limit as x  approaches zero gives 
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 .  x xx yx

dy dx
t

ds ds
 (2.6) 

The derivatives 
dy

ds
 and 

dx

ds
 are the directional cosines xm  and ym  of the angles 

which a normal to AB  makes with x  and y  axes, respectively. Hence 

 ,x xx x yx yt m m    (2.7) 

and by similarly considering the summation of forces in the y   direction it can be 

shown that 

 .y xy x yy yt m m    (2.8) 

The extension to three-dimensional bodies is relatively simple and can be shown to 

give 

 ,x xx x yx y zx zt m m m      (2.9) 

 ,y xy x yy y zy zt m m m      (2.10) 

 ,z xz x yz y zz zt m m m      (2.11) 

where , x ym m  and zm  are the directional cosines of the angles ( , ,x y zm m m  are 

components of the outward unit normal) that a normal to the surface makes with the 

, x y  and z  axes, respectively. The expression for stresses on inclined planes can be 

derived by considering a corner cut off element by the plane AB  inclined at angle   

to the y   axes (see Figure 2.5). 

 

y  

x  

A  

B  C  

xx  

xy  

yy  

yx  

yt  

xt  

 

Figure 2.4: Stresses on the faces of a triangular element. 
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Figure 2.5: Stresses on an inclined plane at a point. 

2.2.4  Equilibrium 

The state of stress at a point can be described by stress components formed on an 

element with sides , , x y z    formed at point with position vector o  by cutting 

planes, shown in Figure 2.6. 

 

The state of stress in an elemental volume of a loaded three-dimensional body, 

shown in Figure 2.6, can be defined in terms of six components of stress (

, , , , , xx yy zz xy xz yz      ); because of the equilibrium of an infinitesimal element of 

the body, they have a symmetry such that  ,  xy yx xz zx      and  yz zy  . The 

first suffix indicates the direction of normal to the plane on which the stress acts, and 

the second suffix indicates the direction in which it acts.  

 

( / )yy yy y dy     

( / )yx yx y dy     ( / )yz yz y dy     

( / )zy zy z dz     

( / )zx zx z dz     

( / )zz zz z dz     

( / )xy xy x dx     

( / )xx xx x dx     

( / )xz xz x dx     

 

Figure 2.6: Stresses on the faces of an infinitesimal element of  . 
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The equations of equilibrium for a three-dimensional system subjected to external 

forces acting on the surface of the body and body forces , x yb b  and zb , acting on the 

domain of the body, are given by 

 0,
  

   
  

xyxx xz
xb

x y z
 (2.12) 

 0,
    

   
  

yx yy yz

yb
x y z

 (2.13) 

 0.
  

   
  

zyzx zz
zb

x y z
 (2.14) 

2.2.5  Displacement 

Displacement  is the difference between the final position  and initial position 

 of a point. The actual path covered to reach the final position is irrelevant. It can 

simply be defined as the shortest path between the final point and the initial point of 

a body. 

 .
fin ini

 u p p   (2.15) 

2.2.6  Strain 

The external and internal forces described earlier result in linear and angular 

displacements in a deformable body. These displacements are generally defined in 

terms of strain. Direct longitudinal strains are associated with direct stresses and 

related to changes in length. If a line element of length L  at a point in the body 

undergoes an extension in length L , then the longitudinal strains at that point are 

defined as 

 
0

lim .



L

L

L
 (2.16) 

The six strain components corresponding to the components of the stress can be 

written in Cartesian directions as , , , ,x y z      . , xx yy   and zz  are direct 

strains and , xy yz   and xz  are shear strains, respectively. Denoting the 

displacements , x yu u  and zu , the strains are related to the displacements via 

 ,





x
xx

u

x
 (2.17) 

 ,





y

yy

u

y
 (2.18) 

 ,





z
zz

u

z
 (2.19) 

u
fin

p

ini
p
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for direct strains, and  

 
1

,
2


 

  
  

y x
xy

u u

x y
 (2.20) 

 
1

,
2


 

  
  

xz
xz

uu

x z
 (2.21) 

 
1

,
2


 

  
  

yz
yz

uu

y z
 (2.22) 

for shear strains. 

2.3  Boundary Conditions 

There are two principal kinds of boundary conditions, Dirichlet (displacement) 

boundary condition and Neumann (traction) boundary condition. The Dirichlet 

boundary condition specifies the values of displacement that a solution needs to take 

on along a part of the boundary of the domain 

 , , .u u x y     (2.23) 

The Neumann boundary condition specifies the values of traction that the derivative 

of a solution is to take on the boundary of the domain  

 , , .t t x y     (2.24) 

When an elastic inclusion is to be considered, the boundary conditions at the 

interface between two materials 
I II  are given in the form that represents the 

continuity of displacements and equilibrium of forces [Braccini and Dupeux (2012)] 

 
І ІІ 0, , ,u u x y      (2.25) 

 
І ІІ 0, , .t t x y      (2.26) 

When the inclusion is rigid, the boundary conditions at the interface between two 

materials 
I II  are given in the form 

 
І ІІ 0, , .u u x y      (2.27) 

Neumann boundary conditions are not needed in this case. 

When the inclusion is in the type of a void instead of an elastic/rigid inclusion, the 

boundary conditions for the boundary of the inclusion are given in the form 

 0, , ,t x y    (2.28) 

and the Dirichlet boundary conditions are not needed. 
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2.4  Hooke’s Law  

The relations between stresses and strain are presented in this section. Referring to a 

fixed Cartesian coordinate system , , x y z . The Hooke’s law can be written as  

 ,σ Cε  (2.29) 

in which 

 , , , , , , ,        C x y z  (2.30) 

where C  are the elastic stiffnesses which are the components of a fourth rank 

tensor. They satisfy the symmetry conditions 

 , , .       C C C C C C  (2.31) 

The inverse of Eq. (2.29) is written as  

 ,ε Sσ  (2.32) 

in which 

 , , , , , , ,        S x y z  (2.33) 

where S  are the elastic compliances which are the components of a fourth rank 

tensor too. They also possess the symmetry 

 , , .       S S S S S S  (2.34) 

2.4.1  Hooke’s Law for Isotropic Materials 

Isotropic materials have identical values of a property in all directions. In a matrix 

form, the Hooke’s law for isotropic material can be written as 

 

1 0 0 0

1 0 0 0

1 0 0 01
,

2 0 0 0 2(1 ) 0 0

2 0 0 0 0 2(1 ) 0

2 0 0 0 0 0 2(1 )

 

 

 

 

 

 

     
    

     
     

    
    

    
    

       

xx xx

yy yy

zz zz

yz yz

xz xz

xy xy

v v

v v

v v

vE

v

v

 (2.35) 

where E  stands for Young’s modulus and v  for Poisson’s ratio. In the matrix form, 

the inverse relation may be written as 
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1 0 0 0

1 0 0 0

1 0 0 0

(1 2 )
0 0 0 0 0 .2 2(1 )(1 2 )

(1 2 )
20 0 0 0 0

2
2

(1 2 )
0 0 0 0 0

2

 

 

 

 

 

 

 
 

    
    
    

    
             

    
       

 
 

xx xx

yy yy

zz zz

yz yz

xz xz

xy xy

v v v

v v v

v v v

vE

v v
v

v

(2.36) 

Many problems in elasticity may be treated satisfactorily by a two-dimensional, or 

plane theory of elasticity. There are two general types of problems involved in this 

plane analysis, the plane stress and the plane strain problems. These two types are 

defined by setting certain restrictions and assumptions on the stress and displacement 

fields. They are introduced descriptively in terms of their physical prototypes. 

2.4.1.1  Plane Stress 

The plane stress problem is defined to be a state of stress in which the normal 

stresses zz  and the shear stresses xz  and 
yz , directed perpendicular to the x y  

plane are assumed to be zero. 

The geometry of the body is essentially that of a plate with one dimension 

(thickness) much smaller than the other two, see Figur 2.7. The loads are applied 

uniformly over the thickness of the plate and act in the plane of the plate. The plane 

stress condition is the simplest form of behaviour for continuum structures and 

represents situations frequently encountered in practice. 

 

Typical loading and boundary conditions for plane stress problems in two-

dimensional elasticity 

a. Loadings may be point forces or distributed forces applied over the thickness 

of the plate. 

b. Supports may be fixed points or fixed edges or roller supports. 
 

x 

y 

P P 

 

Figure 2.7: Scheme of a plane stress problem. 
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Plane stress situation implies 

 0,    zz xz yz
 (2.37) 

and 

 0,  xz yz
 (2.38) 

which yields 

 
2

1 0

1 0 .
1

1 2
0 0

2

 

 

 

 
    
    

     
        
 

xx xx

yy yy

xy xy

v
E

v
v

v

 (2.39) 

The strains in plane stress situation are  

 

1 0
1

1 0 .

2 0 0 2(1 )

 

 

 

    
    

     
        

xx xx

yy yy

xy xy

v

v
E

v

 (2.40) 

The following relation is valid as well 

 
1

( )( ).    zz xx yyv
E

 (2.41) 

2.4.1.2  Plane Strain 

The plane strain problem is defined to be a state of strain in which the strain normal 

to the x y  plane zz  and the shear strains xz  and 
yz  are assumed to be zero. 

 

In plane strain problem, one deals with a situation in which the dimension of the 

structure in one direction, say the z   coordinate direction, is very large in 

comparison with the dimensions of the structure in the other two directions ( x  and 

y   coordinate axes). The geometry of the body is essentially that of a prismatic 

cylinder with one dimension much larger than the others, see Figure 2.8. The applied 

forces act in x y  plane and do not vary in the z   direction, i. e. the loads are 

uniformly distributed with respect to the large dimension and act perpendicular to it. 

Some important practical applications of this representation occur in the analysis of 

dams, tunnels, and other geotechnical works. Also such small scale problems as bars 

and rollers compressed by forces normal to their cross section are amenable to 

analysis in this way. 
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Figure 2.8: Scheme of a plane strain problem. 

The plane strain relation for isotropic materials are 

 0,    zz xz yz
 (2.42) 

and 

 0.xz yz    (2.43) 

This yields 

 

1 0

1 0 ,
(1 )(1 2 )

1 2 2
0 0
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E
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 (2.44) 

with 

 ( ) .
1 1 2

  
 

    
zz xx yy

E v

v v
 (2.45) 

2.4.2  Hooke’s Law for Anisotropic Materials 

An anisotropic material is a material which does not behave in the same way in all 

directions. The compliance matrix for a completely anisotropic material subjected to 

a traixial stress system can be written as 
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


 (2.46) 

with the coefficients matrix defined as 
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 (2.47) 

and 
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where 
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 (2.49) 

xxE , 
yyE , zzE  are Young's moduli in tension-compression in the directions of the x , 

y , z  axes, 
yzG , xzG , 

xyG  are the shear moduli for planes parallel to the coordinate 

plates, 
yx , zx , 

xy , 
zy , xz , 

yz  are Poisson's ratios characterizing the contraction 

in the direction of one axis when tension is applied in the direction of another axis. 

The coefficients 
,xz yz , 

,xy yz , 
,yz xz , 

,xy xz , 
,yz xy , 

,xz xy  are termed Chentsov's 

coefficients; they characterize shears in planes parallel to the coordinate planes 

produced by shearing stresses acting in other planes parallel to the coordinate planes. 

The constants 
,yz x , 

,xz x , 
,xy x , 

,yz y , 
,xz y , 

,xy y , 
,yz z , 

,xz z , 
,xy z  are the mutual 

influence coefficients of the first kind; they characterize extensions in the directions 

of the coordinate axes produced by shearing stresses acting in the coordinate planes. 

,x yz , 
,y yz , 

,z yz , 
,x xz , 

,y xz , 
,z xz , 

,x xy , 
,y xy , 

,z xy  express shears in the coordinate 

planes due to the normal stresses acting in the directions of the coordinate axes; they 

are termed the mutual influence coefficients of the second kind. The inverse relation 

to Eq. (2.46) may be written as 
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 (2.50) 

 with the stiffness matrix defined as 
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2.4.2.1  Plane Stress 

For plane stress problems, S  is composed of the elements of the first, second and 

third rows and columns of Eq. (2.47). 
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12 22 26

16 26 66

.

 
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
 
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s s s
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s s s

 (2.52) 

C  is the inverse of S . 

 

For plane strain problems, 

 
3 3

33

, 3,4,5.
i jstrain

ij ij

s s
s s j

s
    (2.53)  

2.4.2.2  Plane strain 

For plane strain problems, C  is composed of the elements of the first, second and 

third rows and columns of Eq. (2.51). 
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 (2.54) 

S  is the inverse of C . For plane stress problems, 

 
3 3

33

, 3,4,5.
i jstress

ij ij

c c
c c j

c
    (2.55)  

2.4.2.3  No Plane of Elastic Symmetry (Triclinic Materials) 

No reflection planes or axes of rotational symmetry are prescribed to impose 

restrictions on the structure of stiffness matrix, which remains full populated by 21 

independent coefficients C  
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2.4.2.4  Plane of Elastic Symmetry (Monoclinic Materials) 

Suppose that through each point of a body there passes a plane possessing the 

following property: every two directions that are symmetrical with respect to this 

plane are equivalent regarding the elastic properties. A direction normal to the plane 

of elastic symmetry will be termed the principal direction of elasticity (or simply the 

principal direction, in case no other principal directions, e.g. those of the stress and 

strain tensors, are considered at the same time). In this case only one principal 

direction passes through a point of a body. 

If the z axis is taken normal to the plane of elastic symmetry and the other two axes 

lie in this plane, we conclude that eight elastic constants must be zero, and the 

number of elastic constants 
ijc  reduces to 13 

 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0

0 0

0 0
.

0 0 0 0

0 0 0 0

0 0

 
 
 
 

  
 
 
 
  

C

c c c c

c c c c

c c c с

c c

c c

c c c c

 (2.57) 

2.4.2.5  Three Planes of Elastic Symmetry (Orthotropic Materials) 

If through each point of a body there pass three mutually perpendicular (orthogonal) 

planes of elastic symmetry, and the planes of elastic symmetry are parallel at all 

points, then, taking the coordinate axes normal to the planes of elastic symmetry 

(along the principal directions), we find that, in addition to the eight elastic constants 

of the preceding case, there are four more constants equal to zero 
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 (2.58) 

The compliance matrix for orthotropic materials is  
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The stiffness matrix for orthotropic materials, found from the inverse of the 

compliance matrix, is given by 
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 (2.60) 

where  

 
1 2

.
           


xy yx yz zy zx xz xy yz zx

xx yy zzE E E
 (2.61) 

2.4.2.6  Plane of Isotropy (Axis of Rotational Symmetry, Transversely Isotropic 

or Hexagonal Materials) 

Consider a body possessing the following properties: through all points there pass 

parallel planes of elastic symmetry in which all directions are elastically equivalent 

(plane of isotropy). In other words, at each point there is one principal direction and 

an infinite number of principal directions in a plane normal to the first direction. 

Such a body may also be regarded as a body through each point of which there 

passes an axis of elastic symmetry of infinitely high order, i.e., a rotational axis. 
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Let z  axis be taken normal to a plane of isotropy, with the x  and y  axes directed 

arbitrarily in this plane. The stiffnesses are then written as 
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 (2.62) 

2.4.2.7  Nine Planes of Elastic Symmetry (Cubic Material) 

Nine planes of symmetry whose normals are on the three coordinate axes and on the 

coordinate planes making an angle 
4


 with the coordinate axes. The stiffnesses are 

then written as 
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 (2.63) 

Besides above cases of elastic symmetry there exist a number of others. Typical 

kinds of symmetry here are those of single crystals of various elements and 

compounds. It has been proven that there are altogether 32 kinds of geometrical 

crystal symmetry. However, the number of classes of elastic crystal symmetry is 

much fewer (nine) since the same form of the generalized Hooke’s law equations for 

crystals applies to several cases of their geometrical symmetry. 
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Figure 2.9: Evolution of material symmetries by addition of planes and axes of 

symmetry. 

2.4.3  Transformation of Elastic Constants to New Coordinate 

System 

In solving a specific elasticity problem, we have to use the generalized Hooke's law 

equations, which involve the elastic constants 
ijs  or 

ijc . In case of an anisotropic 

body these quantities depend on the directions of the axes of a coordinate system, 

and if the directions of the axes change, so do the values of the elastic constants. An 

exception is an isotropic body for which the generalized Hookee’s law equations 

retain the same form in any orthogonal coordinate system, and the corresponding 

elastic constants remain unchanged (invariant). In studying a state of stress the 

following question often arises: the constants 
ijs  and 

ijc  are known for a coordinate 

system x , y , z , but it is more convenient to use another orthogonal system x , y , 

z  (see Figure 2.10). It is required to find the constants 
ijs , 

ijc  for the second system. 

We assign the cosines of the angles between the axes of the old and new coordinate 

system by Table 2.1. Thus, cos( , )xxl x x , cos( , )xyl x y , etc. 
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x  
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'x  
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O  

 

Figure 2.10: Old coordinate system and new coordinate system.  

Table 2.1: The cosines of the angles between the axes of the old and new 
coordinate system. 

 x  y  z  

x  xxl  xyl  
xzl  

y  yxl  
yyl  

yzl  

z  zxl  zyl  
zzl  

 

The transformation formulas between two coordinate systems can be written as 

 
6 6

1 1

,
 

 ij mn im jn

m n

s s q q  (2.64) 

where 
ijq  are defined in Table 2.2. 

Table 2.2: Symbols ij
q  in transformation formulas for ij

s . 

 1 2 3 4 5 6 

1 
2

xxl  
2

xyl  2

xzl  xy xzl l  
xz xxl l  xy xxl l  

2 
2

yxl  2

yyl  2

yzl  yz yyl l  yz yxl l  yy yxl l  

3 
2

zxl  
2

zyl  2

zzl  zz zyl l  
zz zxl l  zy zxl l  

4 2 zx yxl l  2 zy yyl l  2 zz yzl l  zz yy zy yzl l l l  zz yx zx yzl l l l  zx yy zy yxl l l l  

5 2 zx xxl l  2 zy xyl l  2 zz xzl l  zz xy zy xzl l l l  yz xx zx xzl l l l  zx xy zy xxl l l l  

6 2 yx xxl l  2 xy yyl l  2 xz yzl l  xz yy xy yzl l l l  xz yx xx yzl l l l  xx yy xy yxl l l l  

 

The first subscript in the symbols ijq  indicates a line number in Table 2.2, and the 

second subscript a column number. 2

11 xxq l , 14 xy xzq l l , 44 zz yy zy yzq l l l l  , etc. 
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2.4.4  Transformation of Elastic Constants when the Coordinate 

System is Rotated 

Consider a special case when a new coordinate system x , y , z  is obtained from 

the old system x , y , z  by a rotation for a certain angle   about the common axis 

z z  (see Figure 2.11). In this case, 
ijq  is defined by Table 2.3. 

 

x  

'y  

y  

'x  

z  

  

  

 

Figure 2.11: New coordinate system obtained by rotation of the old system. 

Table 2.3: Symbols 
ijq  in transformation formulas for 

ijs  in rotated coordinate 

system. 

 1 2 3 4 5 6 

1 2cos   
2sin   0  0  0  sin cos   

2 2sin   
2cos   0  0  0  sin cos   

3 0  0  1 0  0  0  

4 0  0  0  cos  sin  0  

5 0  0  0  sin  cos  0  

6 2sin cos   2sin cos   0  0  0  
2 2cos sin   

2.4.5  Transformation of the Boundary Conditions if there are Two 

Arbitrary Oriented Anisotropic Crystals in Contact  

For the boundary condition, we change all the stresses into the same coordinate 

system. The formulas for the transformation of stress components to new axes are 

 , , , , , , ,   
 

        l l x y z  (2.65) 

where l  are defined in Table 2.1. l  were defined in Table 2.4 for the 

transformation between stresses in a Cartesian coordinate system and stresses in a 

cylindrical system r ,  , z  (the z  axes of both system are coincident). 

file:///E:/Qingguo/thesis/thisis_2014/thesis%20with%20eqution_1/Thisis12052014_only5678.docx%23_Toc266101507
file:///E:/Qingguo/thesis/thisis_2014/thesis%20with%20eqution_1/Thisis12052014_only5678.docx%23_Toc266101507
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Table 2.4: The transformation between stresses in a Cartesian coordinate system 

and stresses in a cylindrical system. 

 x  y  z  

x  cos  sin  0  

y  sin  cos  0  

z  0  0  1 

2.5  Anti-plane Deformation 

Anti-plane deformation denotes a special class of deformation where the 

displacements in the body are zero in the plane of interest but non-zero in the 

direction perpendicular to that plane. For small strains, the strain tensor under anti-

plane strain can be written as 

 

0

0

0

0

.
yz

xz





 
 
 
 

  
 
 
 
  

  (2.66) 

The stress tensor that results from a state of anti-plane strain can be expressed as 

 

0

0

0

0

.
yz

xz





 
 
 
 

  
 
 
 
  

  (2.67) 

The displacement field that leads to a state of anti-plane strain is 

 0 0, .
x y

u u   (2.68) 
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3.  Method of Fundamental 

Solutions 

3.1  Introduction 

The purpose of this chapter is to introduce the MFS [Chen, Karageorghis and 

Smyrils (2008)] to solve the isotropic and anisotropic elastic problems in 2D.  

The main idea of MFS consists of approximating the solution of the partial 

differential equation by a linear combination of fundamental solutions, defined in 

source points. In order to avoid the singularity, the source point should be put outside 

of the physical domain to avoid the coincidence with the collocation points. At the 

same time, the corresponding approximating traction was obtained from a linear 

combination of fundamental tractions. The expansion coefficients of the solution in 

MFS are determined so that the solution satisfies the boundary condition. The 

fundamental solution for isotropic elastic problems is given in an exact expression 

with Young’s modulus and Poisson’s ratio. The fundamental solution of anisotropic 

elastic problems is given as a real part of a first order complex polynomial. The 

coefficients of polynomial are determined by solving a six-order equation, 

originating from a zero determinant of a six-order matrix. The elements of the matrix 

stem from the elements of the stiffness matrix. There are three pairs of complex roots 

for the six-order equation. The three roots with positive imaginary parts are the 

coefficients of the complex polynomial. Two of the three roots are used for analysis 

of the plain strain deformation. 

3.2  Governing Equations 

We begin our discussion with three dimensional (3D) problems and afterwards 

reduce it to 2D problems of interest. In order to simplify the discussion, we shall 

assume: (i) the solid is free of body forces, (ii) the thermal strains can be neglected. 

Under these conditions the general equation of elasticity [Bower (2009)] is 

 
2 ( )

0, , , , , , .


 

   


 
 

pu
C x y z

p p
 (3.1) 

The matrix form of the three equilibrium equations (3.1) are  
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11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

/
0 0 0

0 0 0

0 0 0

x x

x y z

y x z

z x y

u pc c c c c c

p p p c c c c c c

c c c c c c

c c c c c cp p p

c c c c c c

c c c c c cp p p

       
        
     
   

     
        
       

/

/
0.

/ /

/ /

/ /

y y

z z

y z z y

x z z x

x y y x

u p

u p

u p u p

u p u p

u p u p

 
 

 
 
  

 
     
     
 
      

                                                                        (3.2) 

3.2.1  Governing Equations for Isotropic Elastic Material 

Consider a two-dimensional solid in domain   with boundary  . The solid behaves 

ideally isotropic elastic. The solid is governed by Navier's equations for plane strain 

problems, which are the conditions for equilibrium equations (3.2) by using the 

stiffness matrix C  in Eq. (2.44), expressed with the displacement u . 

 

22 2

2 2

( )( ) ( )2(1 ) 1
0,

1 2 1 2



 

 
  

     

pp p yx x

x y x y

uu u

p p p p
 (3.3) 

 

2 2 2

2 2

( ) ( ) ( )2(1 ) 1
0, .

1 2 1 2

  
   

     

p p p
p

y y x

y x x y

u u uv

v p p v p p
 (3.4) 

 

1p  2p  

np  
  

Np  

1Np  

x  

y  

n  

D  

T  

 

Figure 3.1: Problem domain   with Dirichlet 
D and Neumann 

T parts of the 

boundary. 

The boundary is divided into two not necessarily connected parts 
D T    . On 

the part 
D  the Dirichlet (displacement) boundary conditions are given, and on the 

part 
T  the Neumann (traction) boundary conditions are given. (see Figure 3.1) 
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3.2.2  Governing Equations for Anisotropic Elastic Material 

For plane strain deformations the displacement field has the form 

( , ) ( , )x x y x y x y yu p p u p p u i i . Under these conditions the equilibrium equations 

(3.2) reduce to  

2 2 22 2 2

11 66 16 16 26 12 662 2 2 2
2 ( ) 0,

    
      

       

y y yx x x

x y x y x y x y

u u uu u u
c c c c c c c

p p p p p p p p
 (3.5) 

2 2 22 2 2

16 26 12 66 66 22 262 2 2 2
( ) 2 0,

    
      

       

y y yx x x

x y x y x y x y

u u uu u u
c c c c c c c

p p p p p p p p
 (3.6)  

2 2 22 2 2

15 46 56 14 56 24 25 462 2 2 2
( ) ( ) 0.

y y yx x x

x y x y x y x y

u u uu u u
c c c c c c c c

p p p p p p p p

    
       

       

 (3.7)  

xu  and 
yu  can be chosen to satisfy two, but not all three, of the three equations, 

because of 2 unknowns. The elastic constants must satisfy 11 0,c   22 0,c   66 0.c   

Consequently, the third equation can only be satisfied by setting 

15 46 14 56 24 25 0.c c c c c c       

 

The formulas for plane stress problems can be obtained from formulas of plane strain 

problems by replacing the components ijc  by 

 
3 3
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' , 3,4,5,
i j

ij ij

c c
c c j

c
    (3.8) 

and setting 14 15 24 25 34 35 46 56' ' ' ' ' ' ' ' 0c c c c c c c c        in the stiffness 

tensor.  

3.3  Fundamental Solution 

3.3.1  Fundamental Solution for Isotropic Elastic Material 

Kelvin's fundamental solution of elasticity is given (see [Beskos (1987), Aliabadi 

(2002)]) in two dimensional plane strain situation by 

2

( )( )1 1
( , ) (3 4 ) log , , , ,

8 (1 )

   

    
 

   
     

   
p s

p s p s
U x y

r r
 (3.9) 

where ( , )U p s  represents the displacement in the direction   at point p  due to a 

unit point force acting in the direction   at point s . 
2 2( ) ( )x x y yr p s p s     is 
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the distance between the point p  and the source point s . / 2(1 )E    is the shear 

modulus of elasticity. The solution (3.9) is expanded as follows 

 
2

2

( )1 1
( , ) (3 4 ) log ,

8 (1 )


 

  
    

   
p s x x

xx

p s
U

r r
 (3.10) 

 
2

( )( )1
( , ) ( , ) ,

8 (1 ) 

 
 


p s p s

x x y y

xy yx

p s p s
U U

r
 (3.11) 

 

2

2

( )1 1
( , ) (3 4 ) log .

8 (1 )


 

   
    

    

p s
y y

yy

p s
U

r r
 (3.12) 

It can be shown that the following xu  and 
yu  satisfy the governing Eqs. (3.3)(3.4)  

 ( ) ( , ) ( , ) ,  p p s p sx xx xyu U U  (3.13) 

 ( ) ( , ) ( , ) ,  p p s p sy yx yyu U U  (3.14) 

where   and   represent arbitrary constants.  

 

The explicit expressions for isotropic problems, used in calculation of the traction 

boundary conditions, are 

 

2

2 4

2( )( )( , ) 1
(4 3) ,

8 (1 )


 

   
   

    

p s x x y yxx x x

x

p s p sU p s

p r r
 (3.15) 

 

2

2 4

2( )( )( , ) 1
(4 3) ,

8 (1 )


 

   
   

    

p s y y y y x xxx

y

p s p s p sU

p r r
 (3.16) 

 

2 2

4

( , ) ( , ) ( )[( ) ( ) ]1
,

8 (1 ) 

     
 
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p s p sxy yx y y y y x x

x x

U U p s p s p s

p p r
 (3.17) 

 

2

2 4

( , ) 2( )( )( )1
(4 3) ,

8 (1 )


 

   
   
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p syy x x y yx x

x

U p s p sp s

p r r
 (3.18) 

 

2

2 4

( , ) ( ) 2( )( )1
(4 3) ,

8 (1 )


 
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   

    

p syy y y y y x x

y

U p s p s p s

p r r
 (3.19) 

 

2 2

4

( , ) ( , ) ( )[( ) ( ) ]1
.

8 (1 ) 

     
 
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p s p sxy yx x x x x y y

y y

U U p s p s p s

p p r
 (3.20) 

3.3.2  Fundamental Solution for Anisotropic Elastic Material 

A fundamental solution for the system (3.1) is obtained from the Green function in 

[Teway, Wagoner and Hirth (1989)] 

    
3

1

1
, Re log ( ) ( ) ,m

m m
m

U z z 
 

  p s p s  (3.21) 
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in which m

  and mz  are variables. 

 

We introduce the complex variable , 1,2,3,mz m   as in [Stroh (1958)] 

 ( ) .m x m yz p p p  (3.22) 

The complex constants , =1,2,3m m  are the roots with positive imaginary parts of 

the sixth-order determinant [Ting (1996)] 

 
T 2| ( ) | 0,    Q R R T  (3.23) 

where | |  represents determinant of matrix, and the matrices ,Q  R  and T  are 

defined through the elements of the stiffness tensor as 

 1 1 1 2 2 2  , , .  kl k l kl k l kl k lQ C R C T C  (3.24) 

For a general anisotropic material, the sixtic equation in   from Eq. (3.23) is then 

2 2 2

11 16 66 16 12 66 26 15 14 56 46

2 2 2

16 12 66 26 66 26 22 56 46 25 24

2 2 2

15 14 56 46 56 46 25 24 55 45 44

2 ( ) ( )

( ) 2 ( ) 0.

( ) ( ) 2

c c c c c c c c c c c

c c c c c c c c c c c

c c c c c c c c c c c

     

     

     

       

        

       

(3.25) 

Here, our interest is focused on anisotropic materials under plane strain deformation. 

As shown in [Ting (1996)], in-plane and anti-plane deformations are uncoupled only 

for anisotropic materials, which satisfy 

 14 15 24 25 46 56 0.c c c c c c       (3.26) 

Under these conditions, Eq. (3.25) is 

2 2

2 11 16 66 16 12 66 26

55 45 44 2 2

16 12 66 26 66 26 22

2 ( )
( 2 ) 0.

( ) 2

c c c c c c c
c c c

c c c c c c c

   
 

   

    
  

    
 (3.27) 

The roots of Eq. (3.27) with positive imaginary parts, 1  and 2 , are those needed 

for the analysis of plane strain deformations. The root with positive imaginary part of 

the quadratic term multiplying the determinant in Eq. (3.27) is given by 

 

2

45 44 55 45

3

44

,



  


c c c c

c
 (3.28) 

where 1   . This root is needed for problems of anti-plane strain. We emphasize 

again that the deformations studied here are plane strain deformations since we have 
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assumed that the elastic state is independent of zp . This assumes that the anisotropic 

material being analyzed can support plane strain deformation. Anisotropic materials 

that do not satisfy (3.26), such as triclinic materials, cannot support a state of plane 

strain. For cubic material 

 
1 2 3

1 1
( 2 2 ) , ( 2 2 ) , ,

2 2
                       (3.29) 

where 
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11 12 12 44

11 44

2
.

 


c c c c

c c
 (3.30) 

We define the elements of the matrix  , written using the standard reduction scheme 

in Eq. (2.51) for the elastic constants [Lekhnitskii (1981)], by 

 
2

11 66 16

, , 1,2,3,
( )( ) ( )( )








     


 
   

m
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c c c
 (3.31) 

where m  is the conjugate complex of m , and 
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44 12
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,
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.
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
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 
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 (3.32) 

3.4  Solution Procedure 

The solution of the problem is sought in the form 

 
1 1

( ) ( , ) ( , ) ,
N N

x xx n xy n
n n

u U U 
 

 

  p p s  p s  (3.33) 

 
1 1

( ) ( , ) ( , ) .
N N

y yx n yy n
n n

u U U 
 

 

  p p s  p s  (3.34) 

Because of Eqs. (2.7)(2.8)(2.17)(2.18)(2.20)(2.21) and (2.29), the traction can be 

expressed as

  
1 1

( ) ( , ) ( , ) ,
N N

x xx n xy n
n n

t T T 
 

 

  p p s p s  (3.35) 

 
1 1

( ) ( , ) ( , ) ,
N N

y yx n yy n
n n

t T T 
 

 

  p p s p s  (3.36) 

where 
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The coefficients n  and n  are calculated from a system of 2N   algebraic 

equations 

 ,Ax g  (3.41) 

where A stands for a 2 2N N   matrix with the entries 
ijA , x is a 2 1N   vector 

with the entries ix , and g  is a 2 1N   vector with entries ig , 
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where the Dirichlet , ,D x y    and the Neumann , ,T x y    type of boundary 

conditions indicators are 

1  in  direction 1  in  direction

0  in  direction 0  in  direction

; , ; ,
( ) ( )

; , ; .

D T

D T
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 

 

 

 
   

  
   

p  i p  i
p p

p  i p  i

∈ ∈
 (3.45) 

3.5  Solution Procedure for a Bi-material 

We generalize the previous discussion for a bi-material problem. Consider that the 

domain 
 
is split into two parts, 

I  and 
II , bounded by boundaries 

I
 
and 

II , 

and a common interface boundary 
I II , as shown in Figure 3.2. The material 

properties in both domains can be different in general. The governing equations are 

formally the same as Eqs. (3.3) (3.4) for isotropic materials and Eqs. (3.5) (3.6) for 

anisotropic materials with 
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or 

 
II

I І

ІІ

,

,

 
 
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p

p
ij

ij

ij

c
c
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 (3.47) 

where indexes I  and II  denote material properties in the domains 
I  and 

II , 

respectively. The boundary conditions at the outer boundaries are given in the form, 

given by the Eqs. (2.23) (2.24). The boundary conditions at the interface between 

two materials 
I II  are given by the Eqs.(2.25) (2.26)  
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Figure 3.2: A bi-material with isotropic elastic or anisotropic elastic, however in 

general different, material properties in domains 
I  and 

II .
 

The boundary I I II 
 
is discretized in 

I I II

N N
   collocation points, and the 

boundary II I II 
 
into 

II I II

N N
   collocation points, where 

I II

N N N    , 

and the number of collocation points on the interphase between two materials is 
I II

N


. The system (3.41) has in the bi-material problem a dimension of 
I II

2( )N N
  , respectively.  
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4.  Non-singular Method of 

Fundamental Solutions for Isotropic 

Problems 

4.1  Introduction 

The purpose of this chapter is development of a Non-singular Method of 

Fundamental Solutions (NMFS) for two-dimensional isotropic linear elasticity 

problems. The NMFS is based on the classical MFS with regularization of the 

singularities. This is achieved by replacement of the concentrated point sources by 

distributed sources over circular discs around the singularity, as originally suggested 

by [Liu (2010)] for potential problems. The Kelvin’s fundamental solution is 

employed in collocation of the governing plane strain force balance equations. In 

case of the Dirichlet boundary conditions, the values of distributed sources are 

calculated directly and analytically. In case of Neumann boundary conditions, the 

respective desingularized values of the derivatives of the fundamental solution in the 

coordinate directions, as required in the calculations, are calculated indirectly from 

the considerations of two reference solutions of the linearly varying simple 

displacement fields. The developments represent a first use of NMFS for solid 

mechanics problems. With this, the main drawback of MFS for these types of 

problems is removed, since the artificial boundary is not present. 

 

Two examples are used to demonstrate the feasibility and accuracy of the newly 

developed method. First one is about a single domain problem in two cases with a 

unit uniform normal load and a bending laod, respectively. In these two cases, the 

NMFS solutions are compared to the MFS solution and analytical solutions. The 

second example with two cases is about the bi-material problems with the normal 

stress and the shear stress. It shows a good agreement with the MFS. 

4.2  Solution Procedure 

The governing equations of the isotropic elastic problems are showin in Chapter 3 as 

Eqs. (3.3) (3.4) and Kelvin's fundamental solution in Eqs.(3.9) is used to solve the 

governing equations.  
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Figure 4.1: Distributed source on a disk ( )A Rs,  with radius R . 

It can be shown that the following xu  and 
yu  satisfy the governing Eqs. (3.3)(3.4) 

 ( ) ( , ) ( , ) ,x xx xyu U U  p p s p s  (4.1) 

 ( ) ( , ) ( , ) ,y yx yyu U U  p p s p s  (4.2) 

where   and   represent arbitrary constants. The fundamental solution ( , )U p s  

is singular when p s . We use the desingularization technique, proposed by Liu 

(2010), for evaluating the singular values. We modify his approach in the sense of 

preserving the original fundamental solution in all points except near the singularity, 

and by scaling the singularity with the area of the circle over which the 

desingularization integration is performed (see Figure 4.1). This allows us to treat the 

MFS and the NMFS in a formally same way. The desingularization (transformation 

of ( , )U p s  into ( , )U p s ) is performed as follows 

 

 
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( , ); ,
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( , ) ; ,
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
s,

p s

p s
p s  

 (4.3) 

where ( , )A Rs  represents a circle with radius R , centered around s . The involved 

integrals can be calculated as follows (by using the integration in polar coordinates 

cos ,x xp s r    siny yp s r   ) 
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2 2
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1 1
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
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In order to impose smoothness of the desingularized value of the fundamental 

solution and its derivatives at point r R , Liu (2010) used an additional term 
2

4


r
 

inside the circular disc, with a remark in the discussion, that the desingularized 

fundamental solution inside the disc does not satisfy the governing equation. This is 

acceptable, since the dimension of R  is usually much smaller than a typical distance 

between the boundary nodes. However, the values inside the disc, except at 0r   

have never been used in his calculations. In a similar way, in order to match 
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(4.10) 

This forms than give smoothness of the desingularized and singular fundamental 

solution and their derivatives at r R  and at the same time preserve the 

desingularized value at 0r  . It can also be shown that the following xu  and yu  

satisfy the governing Eqs. (3.3)(3.4) 
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 ( ) ( , ) ( , ) ,x xx xyu U U  p p s p s  (4.11) 

 ( ) ( , ) ( , ) , ( ).y yx yyu U U A R   p p s p s p s,  (4.12) 

4.3  Discretisation 

The solution of the problem is sought in the form  
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where N  number of boundary nodes. Because of Eqs. (2.7)(2.8)(2.17)(2.18)(2.20)

(2.21)(2.29), the traction can be expressed as
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where np  represent N   points, placed on the physical boundary. The explicit 

expressions, used in calculation of the traction boundary conditions, are 
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except at p = s , where the derivatives are calculated in an indirect way. The 

coefficients n  and n  are calculated from a system of 2N   algebraic equations 

 ,Ax g  (4.27) 

where A  stands for a 2 2N N   matrix with the entries 
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where the Dirichlet , ,  D x y  and the Neumann , ,  T x y  type of boundary 

conditions indicators are 

1  in  direction, 1  in  direction

0  in  direction, 0  in  direction
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The diagonal terms ( , )m mT p p , , , , 1,...,x y m N     in Eqs. (4.15)(4.16) are in 

case of NMFS determined indirectly for collocation points on T . For this purpose, 

the method proposed by Šarler (2009) for potential problems, is applied to determine 

the diagonal terms in these equations. We assume two simple solutions in this 

approach, modified to cope with elasticity problems. The first simple solution is 

( ) , ( ) 0,x x x yu p c u  p  p  everywhere, and xc  denotes a constant. It follows from 

the first solution 
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It follows from Eq. (4.13) for the first solution 
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It follows from Eq. (4.14) for the first solution 
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We solve these equations for the corresponding 1

n  and 1

n . The second simple 

solution is ( ) 0, ( ) ,x y y yu u p c  p  p  everywhere, and yc  denotes a constant. It 

follows from the second solution 

 
( ) ( )( ) ( )

0, 1.
  

   
   

p pp p y yx x

x y x y

u uu u

p p p p
 (4.37) 

It follows from Eq. (4.13) for the second solution 



Discretisation 

47 

 2 2

1 1

( , )( ) ( , )
 0,

N N
xy nx xx n

n n
n n

x x x

Uu U

p p p
 

 

 

 
   

  

p pp p p
 (4.38) 

 2 2

1 1

( , )( ) ( , )
 0.

N N
xy nx xx n

n n
n n

y y y

Uu U

p p p
 

 

 

 
   

  

p pp p p
 (4.39) 

It follows from Eq. (4.14) for the second solution 
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We solve them for the corresponding 2

n  and 2

n . The unknown 8 values of the 

derivatives of the fundamental solutions can respectively be calculated as follows. 

Eqs. (4.33)(4.38) are used to obtain 
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Eqs. (4.34)(4.39) are used to obtain 
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The Eqs. (4.35)(4.40) are used to obtain 
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The Eqs. (4.36)(4.41) are used to obtain 
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The selection of the constants xc  and yc in reference solutions need some care. They 

should be selected in such a way that the denominators in the fractions on the right 

hand side of Eqs. (4.42)-(4.49) are non-zero. By knowing all the elements ijA
 
and ig  
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of the system (4.27), we can determine the values of ix . (i.e. n  and n ). Afterwards, 

we can calculate the solution of the governing equation from 

 
1 1

( ) ( , ) ( , ) , , ,
N N

x n n y n n
n n

u U U x y    
 

 

   p p p p p  (4.50) 

where

 

p  is any point inside the domain or on the boundary. Solution procedure for a 

bi-material is the same as described in Chapter 3.5. 

4.4  Numerical Examples 

4.4.1  Example 4.1: Single Domain Problem 

In the Example 4.1, we consider a square with the side length 2 ma   centered 

around 0 m, 0 mx yp p  . Elastic media is defined by 
21 N/m ,E  0.3  . 

Case 4.1.1: a Unit Uniform Normal Load Case 
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Figure 4.2: Case 4.1.1. Scheme of square subject to a unit uniform normal load. 

We consider a solution of the Navier’s equations in this square subject to the 

boundary conditions 0 m,xu   0 myu   at point 0 m,xp   1m,yp    and 

20 N/m ,xt   0 myu   on all other points of the south side of the square with 

1m.yp    On the north side of the square with 1m,yp   uniform traction is 

prescribed 20 N/m ,xt   21 N/m ,yt   and on the east 1mxp   and west 1mxp    

sides 20 N/m ,xt   20 N/myt   is set (see Figure 4.2). Such a unit uniform normal 

(in-plane) load acting along a single side of the square, was previously studied by 

Huang and Cruse (1994) when developing non-singular traction boundary integral 

equations in elasticity, and Panzeca, Fujita Yashima and Salerno (2001) by 

developing symmetric boundary element Galerkin method. The analytical solution is 
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 0 39 0 91 1. , . ( ),   
x x y y

u p u p  (4.51) 

 0 1 0, , .    
x y xy

 (4.52) 

A plot of the deformation, obtained with the analytical solution and the numerical 

solutions with MFS and NMFS is shown in Figure 4.3 for the case with 100 nodes. 

The distance of the fictitious boundary from the true boundary for the MFS is set 

5 ,MR d  where d  is the smallest distance between two nodes on the boundary. The 

radius of the circular disk for the distributed area source covering each node is set to 

/ 5.R d  The simple solution constants used in calculation of the diagonal 

coefficients are defined as 4 mx yc c   (see Figure A in Appendix). When selecting 

0 mx yc c  (see Figure B in Appendix), we obtain for 1 2 2 1

m m m m     a numerical 

value 
18-7.8413 10 for point 0 m, 1mx yp p   (both solutions have ( ) 0 mxu p  

in this point) and the solution obtained in this way is wrong (see Figure C in 

Appendix). So the two reference solutions should be selected in such a way that 
1 2 2 1 2 1 1 20, 0, 1,2,...,m m m m m m m m m N            . 

 

 

 

 

 

 

 

 

 

Figure 4.3: Case 4.1.1. The analytical solution and the numerical solution of MFS 

and NMFS with 100N   (  : collocation points; : source points in MFS;  : 

analytical solution;  : MFS solution; : NMFS solution). 

The solution on boundary points are computed and compared with the analytical 

solutions. The root mean square (RMS) errors of the numerical solution are defined 

as 

 
2

1

1
( ) , , .

N

n n
n

e u u x y
N

   


    (4.53) 

 



Numerical Examples 

51 

where 
nu  and , ( , )nu x y    is the analytical and the numerical solution, 

respectively. The number of boundary nodes used is from 100 to 1924 (Odd-number 

of points should be used on the side in uniform discretization, since the middle point 

is fixed at 1myp   ). 
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Figure 4.4: Case 4.1.1. The relationship between the RMS errors and the number 

of boundary nodes for different R , calculated by NMFS ( xe :   / 3R d ,  

/ 4R d ,  / 5R d ,   / 6R d ; ye :   / 3R d ,   / 4R d ,   / 5R d ,  

/ 6R d ). 

Figure 4.4 shows RMS errors of the results obtained using the NMFS with different 

R . The errors are already less than 210  with 196N   and the solution converges to 

the analytical solution with the increasing number of the nodes. The xe  and 
ye  are 

increasing with the decreasing R  when / 5R d  (see Table 4.1). A comparison of 

the NMFS results with the MFS results is shown in 2 for / 5R d . Here it should be 

noted, that the MFS solution error is rather small, however the convergence is not 

uniform. This fact is due to the choice of the artificial boundary position, that was for 

all node arrangements 5MR d , and thus most probably not optimally varying. 

 

 

 

 



Non-singular Method of Fundamental Solutions for Isotropic Problems 

52 

Table 4.1: Case 4.1.1. RMS errors of NMFS solution as a function of different R . 

Number 

of 

boundary 

nodes 

( N  ) 

/ 3R d  / 4R d  / 5R d  / 6R d  

xe  
2( 10 )

 

ye  
2( 10 )

 

xe  
2( 10 )

 

ye  
2( 10 )

 

xe  
2( 10 )

 

ye  
2( 10 )

 

xe  
2( 10 )

 

ye  
2( 10 )

 

100 0.4384 1.0959 0.3664 0.7791 0.3812 0.6467 0.4404 0.6466  

196 0.2116 0.5453 0.1902 0.4175 0.2044 0.3672 0.2355 0.3681 
292 0.1401 0.3620 0.1295 0.2873 0.1408 0.2595 0.1622 0.2616 
388 0.1054 0.2707 0.0986 0.2197 0.1078 0.2017 0.1241 0.2042 
484 0.0848 0.2162 0.0798 0.1782 0.0875 0.1654 0.1007 0.1681 
580 0.0712 0.1799 0.0672 0.1500 0.0737 0.1405 0.0848 0.1431 
676 0.0614 0.1541 0.0581 0.1297 0.0638 0.1222 0.0733 0.1247 
772 0.0542 0.1347 0.0513 0.1142 0.0562 0.1082 0.0646 0.1107 
868 0.0485 0.1197 0.0459 0.1021 0.0503 0.0972 0.0578 0.0995 
964 0.0439 0.1077 0.0416 0.0924 0.0455 0.0882 0.0523 0.0905 

1060 0.0402 0.0979 0.0380 0.0844 0.0416 0.0808 0.0477 0.0830 
1156 0.0371 0.0897 0.0350 0.0776 0.0383 0.0746 0.0439 0.0767 
1252 0.0344 0.0828 0.0325 0.0719 0.0355 0.0693 0.0407 0.0712 
1348 0.0322 0.0769 0.0303 0.0670 0.0331 0.0647 0.0379 0.0666 
1444 0.0302 0.0718 0.0284 0.0627 0.0310 0.0606 0.0355 0.0625 
1540 0.0285 0.0673 0.0268 0.0589 0.0292 0.0571 0.0334 0.0589 

1636 0.0269 0.0633 0.0253 0.0556 0.0275 0.0540 0.0315 0.0557 
1732 0.0255 0.0598 0.0240 0.0526 0.0261 0.0512 0.0298 0.0528 
1828 0.0243 0.0567 0.0228 0.0500 0.0248 0.0486 0.0283 0.0502 
1924 0.0232 0.0538 0.0217 0.0476 0.0236 0.0464 0.0269 0.0479 
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Table 4.2: Case 4.1.1. RMS errors of MFS and NMFS solutions with 5MR d ,
 
 

/ 5R d . 

Number of boundary 

nodes ( N  ) 

MFS NMFS  
2( 10 )xe  

2( 10 )ye  2( 10 )xe  
2( 10 )ye  

100 0.0001 0.0001 0.3812 0.6467 
196 0.0000 0.0000 0.2044 0.3672 
292 0.0000 0.0000 0.1408 0.2595 
388 0.0067 0.0073 0.1078 0.2017 
484 0.0086 0.0055 0.0875 0.1654 
580 0.0001 0.0001 0.0737 0.1405 
676 0.0000 0.0000 0.0638 0.1222 
772 0.0005 0.0002 0.0562 0.1082 
868 0.0007 0.0003 0.0503 0.0972 
964 0.0181 0.0139 0.0455 0.0882 

1060 0.0849 0.0556 0.0416 0.0808 
1156 0.0002 0.0004 0.0383 0.0746 
1252 0.0004 0.0005 0.0355 0.0693 
1348 0.1234 0.0840 0.0331 0.0647 
1444 0.0003 0.0003 0.0310 0.0606 
1540 0.0003 0.0004 0.0292 0.0571 
1636 0.0001 0.0002 0.0275 0.0540 
1732 0.0000 0.0001 0.0261 0.0512 
1828 0.0001 0.0001 0.0248 0.0486 
1924 0.3393 0.2868 0.0236 0.0464 

Case 4.1.2: A Bending Load Case 

In the case 4.1.2, the boundary conditions on east, west, and south sides of the square 

are also the same as in the first example. On the north side of the square with 

1m,yp   bending traction is prescribed 20 N/m ,xt   2( / m) N/my xt p  (see Figure 

4.5). Such a bending load, acting along a single side of the plate, was previously 

studied (like Case 4.1.1) by Huang and Cruse (1994) and Panzeca, Fujita Yashima 

and Salerno (2001). The analytical solution is 

 
2 20 195 0 445 1 0 91 1. . ( ) , . ( ),     

x x y y x y
u p p u p p  (4.54) 

 0 0, , .    
x y x xy

p  (4.55) 

A plot of the deformation, obtained with the analytical solution and the numerical 

solutions with MFS and NMFS is shown in Figure 4.6 for the case with 100 nodes. 

MR , R , ,x yc c , are set the same as in Case 4.1. The number of boundary nodes used 

is from 100 to 1924 and the results are shown in Table 4.4. 
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Figure 4.5: Case 4.1.2. A square plate subjected to a bending load. 

 

Figure 4.6: Case 4.1.2. The analytical solution and the numerical solution of MFS 

and NMFS with  ( : collocation points; : source points in MFS; : 

analytical solution; : MFS solution; : NMFS solution). 
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Figure 4.7: Case 4.1.2. The relationship between the RMS and the number of 

boundary nodes for different R , calculated by NMFS ( : , ,

 ,  ; : , ,  ,  ). 

Figure 4.7 shows RMS errors of the results obtained by using the NMFS for different 
R . The solution converges to the analytical solution with the increasing number of 

the nodes, except in case with . The  and  are increasing with the 

decreasing of  when  (see Table 4.3). A comparison of the NMFS results 

with the MFS results is shown in Table 4.4 for . Here it should be noted, 

that the MFS solution error is rather small, however the convergence is not uniform. 

This fact it is due to the choice of the artificial boundary position, that was for all 

node arrangement
 

, and thus most probably not optimally varying. 
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Table 4.3: Case 4.1.2. RMS errors of NMFS solution as a function of different R . 

Number 

of 

boundary 

nodes 

( N  ) 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  100 1.2966 1.8427 3.9306 1.0462 5.9593 0.7990 7.6367 1.0348 

  196 2.3923 0.8280 3.9301 0.4572 5.1065 0.4276 6.0761 0.6090 

  292 2.6117 0.5201 3.7094 0.2878 4.5558 0.3037 5.2546 0.4415 

  388 2.6686 0.3751 3.5290 0.2097 4.1962 0.2388 4.7481 0.3491 

  484 2.6797 0.2917 3.3904 0.1651 3.9439 0.1980 4.4024 0.2898 

  580 2.6751 0.2379 3.2824 0.1364 3.7568 0.1697 4.1503 0.2484 

  676 2.6649 0.2004 3.1961 0.1163 3.6121 0.1489 3.9575 0.2178 

  772 2.6528 0.1729 3.1257 0.1015 3.4967 0.1328 3.8049 0.1940 

  868 2.6406 0.1518 3.0672 0.0901 3.4023 0.1200 3.6810 0.1751 

  964 2.6287 0.1353 3.0176 0.0810 3.3236 0.1095 3.5781 0.1597 

  1060 2.6175 0.1219 2.9752 0.0737 3.2568 0.1008 3.4912 0.1469 

  1156 2.6071 0.1109 2.9384 0.0676 3.1994 0.0934 3.4168 0.1360 

  1252 2.5974 0.1016 2.9061 0.0624 3.1495 0.0871 3.3522 0.1266 

  1348 2.5885 0.0938 2.8776 0.0581 3.1057 0.0816 3.2957 0.1185 

  1444 2.5802 0.0870 2.8522 0.0543 3.0669 0.0768 3.2458 0.1115 

  1540 2.5725 0.0812 2.8294 0.0509 3.0323 0.0725 3.2013 0.1052 

1636 2.5654 0.0760 2.8088 0.0480 3.0011 0.0687 3.1614 0.0996 

1732 2.5588 0.0715 2.7902 0.0454 2.9730 0.0653 3.1254 0.0946 

1828 2.5526 0.0675 2.7731 0.0431 2.9475 0.0623 3.0928 0.0901 

1924 2.5468 0.0639 2.7575 0.0410 2.9241 0.0595 3.0630 0.0860 

 

 

 

 

 

 

 

 

/ 3R d / 4R d / 5R d / 6R d

xe
2( 10 )

ye

2( 10 )

xe
2( 10 )

ye

2( 10 )

xe
2( 10 )

ye

2( 10 )

xe
2( 10 )

ye

2( 10 )
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Table 4.4: Case 4.1.2. RMS errors of MFS and NMFS solutions with 5MR d ,
 
 
 
 

/ 5R d . 

Number of boundary 

nodes ( N  ) 

MFS NMFS  

    

100 2.3656 0.0002 5.9593 0.7990 

196 4.5717 5.3138 5.1065 0.4276 

292 3.5939 1.4795 4.5558 0.3037 

388 2.3657 0.0037 4.1962 0.2388 

484 2.3710 0.0038 3.9439 0.1980 

580 2.0706 1.1063 3.7568 0.1697 

676 1.3096 1.1845 3.6121 0.1489 

772 1.8889 2.4678 3.4967 0.1328 

868 0.8536 0.4878 3.4023 0.1200 

964 2.4082 0.0282 3.3236 0.1095 

1060 2.3126 0.0347 3.2568 0.1008 

1156 2.3640 0.0016 3.1994 0.0934 

1252 2.3620 0.0196 3.1495 0.0871 

1348 2.3589 0.0055 3.1057 0.0816 

1444 2.3638 0.0016 3.0669 0.0768 

1540 2.3654 0.0008 3.0323 0.0725 

1636 2.4276 0.3268 3.0011 0.0687 

1732 1.8726 2.3862 2.9730 0.0653 

1828 1.6583 1.7767 2.9475 0.0623 

1924 2.3374 0.0267 2.9241 0.0595 

4.4.2  Numerical Example 4.2: Bi-material Problem 

We consider a square with the side length  in Example 4.2. It is divided into 

two cases and each case is distinguishes three sub-cases. In the first sub-case, the 

whole square is occupied by one material, with the material properties 

. In the second sub-case, the square is split into upper and lower parts with 

the same material properties as in the first example , 

and in the third sub-case, the square is split as in the second one, but with more rigid 

material on the top, i.e.   . 

2( 10 )xe 2( 10 )ye 2( 10 )xe 2( 10 )xe

2 ma 

21 N/m ,E 

0.3 
I II 21 N/m ,E E 

I II 0.3v v 

I 25 N/m ,E  II 21 N/m ,E 
I II 0.3v v 
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Case 4.2.1: Normal Stress Problem 

 

Figure 4.8: Case 4.2.1. The deformation, calculated with MFS and NMFS, for a 

one-domain case with  and  ( : collocation points; : 

source points in MFS; : MFS solution; : NMFS solution). 

We consider the solution of the Navier’s equations in this square subject to the 

boundary conditions 0 m,xu 
 

0.1myu    on the north side with
 

1m,yp   and

0 m,xu   0.1myu   on the south side with 1m,yp    and 0 N/m,xt   

20 N/myt 
 
on the east and west sides of the square with 1mxp    and 1m,xp 

respectively. A plot of the deformation, calculated with the defined three sub-cases is 

shown in Figure 4.8, Figure 4.9 and Figure 4.10, respectively. The following 

parameters have been used / 5,R d  I I / 5,R d  II II / 5,R d  
I I II II 4 m

x y x y x y
c c c c c c      . The distance of the fictitious boundary from the 

true boundary in case of MFS is , , . 

 

 

 

21N/m ,E  0.3  80N  



5MR d
I I5MR d II II5MR d
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Figure 4.9: Case 4.2.1. The deformation, calculated with MFS and NMFS, for a bi-

material case with material properties I II 21 N/m ,E E  , and 

 and 
I II

20N
   ( : collocation points; : source points in MFS; : MFS 

solution; : NMFS solution) . 

 

Figure 4.10: Case 4.2.1. The deformation, calculated with MFS and NMFS, for a 

bi-material case with material properties I 25 N/m ,E  II 21 N/m ,E   

 and  and 
I II

20N
   ( : collocation points; : source points 

in MFS; : MFS solution; : NMFS solution) . 

 

 

I II 0.3v v 

80N   

I II 0.3v v  80N  


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Table 4.5: Case 4.2.1. The results of MFS and NMFS for example from Figure 

4.10. 

  
MFS NMFS 

    

0 0.9000 0.0000 -9.7508 0.0006 -9.5376 

0 0.7000 0.0000 -9.2060 0.0027 -9.0131 

0 0.5000 0.0000 -8.5927 0.0056 -8.4228 

0 0.3000 0.0000 -7.9061 0.0089 -7.7673 

0 0.1000 0.0000 -7.1430 0.0125 -7.0381 

0 -0.1000 0.0000 -5.0788 0.0142 -4.8667 

0 -0.3000 0.0000 -1.6275 0.0119 -1.5403 

0 -0.5000 0.0000 1.8972 0.0085 1.8589 

0 -0.7000 0.0000 5.3340 0.0050 5.1709 

0 -0.9000 0.0000 8.5295 0.0018 8.2406 

Case 4.2.2: Shear Stress Problem 

We consider the solution of the Navier’s equations subject to the boundary 

conditions 0.1mxu   , 0 myu   on the north side with 1myp  , and 0.1mxu  , 

0 myu   on the south side with 1myp   , and 20 N/mxt  , 20 N/myt   on the 

east and west sides of the square with 1mxp    and 1mxp  , respectively. A plot 

of the deformation, calculated with the three sub-cases is shown in Figure 4.11 to 

Figure 4.145, respectively. 

 

 

Figure 4.11: Case 4.2.2. The deformation, calculated with MFS and NMFS, for a 

one-domain case with material properties 21 N/m ,E   and  ( : 

collocation points; : source points in MFS; : MFS solution; : NMFS solution). 

xp zp 2( 10 )xu 
2( 10 )yu  2( 10 )xu 

2( 10 )yu 

0.3  80N  


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Figure 4.12：Case 4.2.2. The deformation, calculated  with FEM by Deform code 

for a one-domain case as in Figure 4.11. 

 

Figure 4.13: Case 4.2.2. The deformation, calculated with MFS and NMFS, for a 

bi-material case with material properties I II 21 N/m ,E E  , and 

 and 
I II

20N
   ( : collocation points; : source points in MFS; : MFS 

solution; : NMFS solution). 

 

I II 0.3v v 

80N   
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Figure 4.14: Case 4.2.2. The deformation, calculated with MFS and NMFS, for a 

bi-material case with material properties I 25 N/m ,E  II 21 N/m ,E    

and  and 
I II

20N
   ( : collocation points; : source points in MFS; : 

MFS solution; : NMFS solution) . 

 

Figure 4.15: Case 4.2.2. The deformation, calculated with FEM by Deform code 

for a bi-material case as in Figure 4.14.

 

I II 0.3v v 

80N   
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Table 4.6: Case 4.2.2. The results of MFS and NMFS for example from Figure 

4.14. 

  
MFS NMFS 

    

0  0.9000 -9.7338 0.0000 -9.7120 -0.0018 

0 0.7000 -9.0963 0.0000 -9.0231 -0.0054 

0 0.5000 -8.3310 0.0000 -8.2141 -0.0099 

0 0.3000 -7.4769 0.0000 -7.3302 -0.0161 

0 0.1000 -6.5940 0.0000 -6.4374 -0.0243 

0 -0.1000 -4.4547 0.0000 -4.2997 -0.0277 

0 -0.3000 -1.0468 0.0000 -0.8980 -0.0231 

0 -0.5000 2.3213 0.0000 2.4442 -0.0170 

0 -0.7000 5.5617 0.0000 5.6458 -0.0103 

0 -0.9000 8.5810 0.0000 8.6164 -0.0036 

4.5  Discussion 

Example 4.1 shows good agreement of both NMFS and MFS solutions with the 

analytical solution. Example 4.2 shows good agreement between the solution of  both 

NMFS and MFS for a single domain region and a solution recalculated with the two 

regions in ideal mechanical contact and with the same material properties (compare 

Figure 4.8 with Figure 4.9, and Figure 4.11 with Figure 4.13). The maximum 

absolute difference in displacements between values in Figure 4.8 and Figure 4.9 at 

the outer boundary are 0.0011mxu   
0.0009 myu  , and between Figure 4.11 

and Figure 4.13 0.0004 mxu  . 0.0014 myu  , respectively. At the same time, 

the result of FEM for a single domain region is shown for comparing with the NMFS 

(see Figure 4.12). The Cases 4.2.1 and 4.2.2 demonstrate the expected behaviour of 

the solution when a bi-material with different elasticity parameters is deformed (see 

Figure 4.10 and Figure 4.14 for MFS and NMFS, Figure 4.15 for FEM). 

4.6  Conclusions 

A new NMFS (termed also BDSM by Liu (2010)), is extended in this chapter to 

solve the two-dimensional linear elasticity problems. In this approach, the singular 

values of fundamental solution are integrated over small circular discs, so that the 

coefficients of the system of equations can be evaluated analytically in case of 

displacement boundary conditions, leading to extremely simple computer 

implementation of this method. In case of traction boundary conditions, two more 

systems of equations with the same size as the original MFS problem have to be 

solved to determine the respective desingularized derivatives. The NMFS essentially 

gives the same results as the classical MFS. It has the advantage that the artificial 

boundary is not present, however on the expense of solving three times the systems 

of algebraic equations in comparison with only one solution in MFS. The results 

obtained using MFS and NMFS are compared to each other. Sensitivity analyses of 

xp zp 2( 10 )xu 
2( 10 )yu  2( 10 )xu 

2( 10 )yu 
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the influence of density of points are done and representative numerical examples for 

singe and bi-materials have been performed. The NMFS method presented in this 

chapter is very general and it can be adapted or extended to handle many related 

problems, such as three dimensional elasticity, anisotropic elasticity, and multi-body 

problems which all represent directions of next chapters. The advantage of not 

having to generate the artificial boundary is particularly welcome in these types of 

problems. The developed method most probably represents a simplest known way 

how to numerically cope with these type of problems. 

 



 

 

5.  Non-singular Method of 

Fundamental Solutions for 

Anisotropic Problems  

5.1  Introduction 

The purpose of this chapter is to expand the NMFS to the two-dimensional 

anisotropic linear elasticity problems. The singularities are dealth with in the same 

way as for isotropic problems. The fundamental solution for anisotropic problems is 

much more complex than the one for isotropic problems. The desingularisation can 

not be calculated in a closed form and a numerical evaluation is performed. In case 

of the Dirichlet boundary conditions, the values of distributed sources are calculated 

directly and analytically. In case of Neumann boundary conditions, the respective 

desingularized values of the derivatives of the fundamental solution in the coordinate 

directions are calculated indirectly.  

 

Two examples are used to demonstrate the feasibility and accuracy of the newly 

developed method. In the first example, the NMFS solutions are compared with MFS 

solutions and analytical solutions for a spectra of anisotropic plane strain elasticity 

problems with entirely Dirichlet boundary conditions and mixed boundary conditions. 

In the second example, the NMFS is used for bi-material problems and compared 

with MFS under entirely Dirichlet boundary conditions and mixed boundary 

conditions. The NMFS turns out to give similar results as the MFS in all spectra of 

performed tests.  

5.2  Solution Procedure 

The governing equations of the anisotropic elastic problems are given by Eqs. (3.5) 

(3.6). The fundamental solution in Eq. (3.21) is used to solve the governing equations. 

The desingularization (transformation of  into ) is performed in 

the following way 

  (5.1) 

 ,U p s  ,U p s

 
2

( , ); , 

( , ) 1
( , ) ; ,

A R

U r R

U
U dA r R

R











 






s,

p s

p s
p s  
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where  represents a disk with radius , centered around . The integral over 

area  can be calculated by a simple integration formula 

  (5.2) 

with 

  (5.3) 

 

1q  

2q  

Kq  

1Kq  

s  

R  

1  

2  

 

Figure 5.1: Scheme of a simple numerical integration over disk. 

For all the collocation points , we pick the same  and . Then all of  

 will be the same. We only need to calculate the integral (5.2) once. The 

velue of  in general depends on the number of integration points. However, 

in the present case, the value is not sensitive to the number of integration points. 

However, for possibility other cases, this need to be checked. 

 

Discretisation for single material is the same as described in the Chapter 4.3 and 

solution procedure for a bi-material is the same as described in Chapter 3.5. 
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5.3  Numerical Examples  

5.3.1  Example 5.1: Single Domain Problem 

We consider an anisotropic material (cubic material defined in Chapter 2.4.2.7) in a 

square , subject to Dirichlet boundary conditions, 

corresponding to the exact solution of the problem, for which  

  (5.4) 

We take  2

12 12.14 N/m ,c   2

66 7.54 N/mc   which is appropriate 

for crystal copper. Here indicators 1, 2, 6 denote , ,xx yy xy  as in Eqs. (2.47) and 

(2.51). The principal directions of crystal coincides with the axes of the Cartesian 

coordinate system.  This convention will be used all over this dissertation for 

anisotropic materials. The example was already studied in [Berger and Karageorghis 

(2001)] for plane strain problems using MFS. The distance of the fictitious boundary 

from the true boundary for the MFS is set
 

5MR d . The radius of the disk for the 

distributed area source covering each node is set to / 5R d . The simple reference 

solution constants used in calculation of the diagonal coefficients are defined as 

4 m
x y

c c  . 

 

The relationship between the numerically calculated  and  is shown in Figure 

5.2 (see Eq. (5.2)). We are taking 100K  ,
 
 in all numerical integrations over the 

disk. We split the Example 5.1 into two different cases. A selection of  field 

points inside the domain along the line  with  is 

taken for computing the RMS error. The number of boundary nodes used is from 200 

to 2000. 

 

Figure 5.2: Example 5.1. The relationship between the number of the numerical 

integration nodes  and  ( : , :  and yxU ,  : ). 

( 1m,1m) ( 1m,1m)   

, .x x y yu p u p 

2

11 16.84 N/m ,c 

U K

20N 

0 myp  0.95 m 0.95 mxp  

 

K U  xxU  xyU yyU
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Case 5.1.1: Dirichlet Boundary Conditions 

 

Figure 5.3: Case 5.1.1. Scheme of the geometry and Dirichlet boundary conditions.  

 

Figure 5.4: Case 5.1.1. The analytical solution and the numerical solution of MFS 

and NMFS with  ( : collocation points; : source points in MFS; : 

analytical solution; : MFS solution; : NMFS solution). 

We consider the solution of the governing equations in this square subject to the 

boundary conditions ,x xu p   on all the boundary points (see Figure 5.3). A 

plot of the deformation, obtained with the analytical solution and the numerical 

solutions with MFS and NMFS is shown in Figure 5.4, and the result of the domain 

points is shown in Table 5.1 for the case with 100N   nodes. Figure 5.5 shows 

RMS errors of the results obtained using the NMFS. The errors are already less than 

 with  and the solution converges to the analytical solution with the 

increasing number of the nodes. A comparison of the NMFS results with the MFS 

results is given in Table 5.2. Here, it should be noted, that the MFS solution error is 

rather small, however the convergence is not uniform. This fact is due to the choice 
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of the artificial boundary position, that was for all node arrangements , and 

thus most probably not varying optimally.  

Table 5.1: Case 5.1.1. The analytical solution and the numerical solutions with 
MFS and NMFS. 

 
 

Analytical solution MFS NMFS 

 
 

 
 

 
 

-0.95 0.0 -0.9500 0.0000 -0.9500 0.0000 -0.9447 0.0000 

-0.85 0.0 -0.8500 0.0000 -0.8500 0.0000 -0.8497 0.0000 

-0.75 0.0 -0.7500 0.0000 -0.7500 0.0000 -0.7499 0.0000 

-0.65 0.0 -0.6500 0.0000 -0.6500 0.0000 -0.6500 0.0000 

-0.55 0.0 -0.5500 0.0000 -0.5500 0.0000 -0.5501 0.0000 

-0.45 0.0 -0.4500 0.0000 -0.4500 0.0000 -0.4501 0.0000 

-0.35 0.0 -0.3500 0.0000 -0.3500 0.0000 -0.3501 0.0000 

-0.25 0.0 -0.2500 0.0000 -0.2500 0.0000 -0.2501 0.0000 

-0.15 0.0 -0.1500 0.0000 -0.1500 0.0000 -0.1501 0.0000 

-0.05 0.0 -0.0500 0.0000 -0.0500 0.0000 -0.0500 0.0000 

0.05 0.0 0.0500 0.0000 0.0500 0.0000 0.0500 0.0000 

0.15 0.0 0.1500 0.0000 0.1500 0.0000 0.1501 0.0000 

0.25 0.0 0.2500 0.0000 0.2500 0.0000 0.2501 0.0000 

0.35 0.0 0.3500 0.0000 0.3500 0.0000 0.3501 0.0000 

0.45 0.0 0.4500 0.0000 0.4500 0.0000 0.4501 0.0000 

0.55 0.0 0.5500 0.0000 0.5500 0.0000 0.5501 0.0000 

0.65 0.0 0.6500 0.0000 0.6500 0.0000 0.6500 0.0000 

0.75 0.0 0.7500 0.0000 0.7500 0.0000 0.7499 0.0000 

0.85 0.0 0.8500 0.0000 0.8500 0.0000 0.8497 0.0000 

0.95 0.0 0.9500 0.0000 0.9500 0.0000 0.9447 0.0000 

 

 


 

 
Figure 5.5: Case 5.1.1. The relationship between the RMS errors and the number 

of boundary nodes, calculated by NMFS ( : ; : ). 

5MR d

xp yp
xu yu

xu yu
xu yu

 xe  ye
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Table 5.2: Case 5.1.1. RMS errors of MFS and NMFS solutions with
 

5MR d , 

/ 5R d . 

Number of boundary 

nodes ( ) 

MFS NMFS 

 

 

 

 

200 0.0001 0.0001 4.7486 0.0000 

300 0.0001 0.0000 1.7222 0.0000 

400 0.0000 0.0000 1.0754 0.0000 

500 0.0000 0.0001 0.7657 0.0000 

600 0.0000 0.0000 0.5815 0.0000 

700 0.0002 0.0001 0.4610 0.0000 

800 0.0000 0.0000 0.3770 0.0000 

900 0.0002 0.0002 0.3158 0.0000 

1000 0.0002 0.0000 0.2695 0.0000 

1100 0.0060 0.0091 0.2335 0.0000 

1200 0.0001 0.0002 0.2049 0.0000 

1300 0.0000 0.0002 0.1816 0.0000 

1400 0.0000 0.0009 0.1625 0.0000 

1500 0.0009 0.0005 0.1465 0.0000 

1600 0.0000 0.0005 0.1329 0.0000 

1700 0.0000 0.0002 0.1214 0.0000 

1800 0.0001 0.0002 0.1114 0.0000 

1900 0.0029 0.0128 0.1027 0.0000 

2000 0.0007 0.0009 0.0951 0.0000 

Case 5.1.2: Mixed Boundary Conditions 

We consider the solution of the governing equations (3.5) (3.6) in the previously 

defined square, subject to the boundary conditions 20 N/myt   on the points of the 

side 1m,xp   and 20 N/mxt   on the side 1m,yp   and ,x xu p  ,y yu p  on the 

other boundary points (see Figure 5.6). A plot of the deformation, obtained with the 

analytical solution and the numerical solutions with MFS and NMFS, is shown in 

Figure 5.7 for the case with 100N   nodes.  

N  5( 10 )xe 
5( 10 )ye  5( 10 )xe 

5( 10 )ye 
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Figure 5.6: Case 5.1.2. Scheme of a square subject to mixed boundary conditions. 

 

Figure 5.7: Case 5.1.2. The analytical solution and the numerical solution of MFS 

and NMFS with  ( : collocation points; : source points in MFS; : 

analytical solution; : MFS solution; : NMFS solution). 

The same selection of the reference points is used as in the previous example, to 

calculate the RMS error of the solution. The solution is presented in Figure 5.8. 
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Table 5.3: Case 5.1.2. The analytical and the numerical solution with MFS and 

NMFS. 

 
 

Analytical solution MFS NMFS 

 
 

 
 

  

-0.95 0.0 -0.9500 0.0000 -0.9500 0.0000 -0.9447 -0.0000 

-0.85 0.0 -0.8500 0.0000 -0.8500 0.0000 -0.8496 -0.0000 

-0.75 0.0 -0.7500 0.0000 -0.7500 0.0000 -0.7497 -0.0000 

-0.65 0.0 -0.6500 0.0000 -0.6500 0.0000 -0.6497 0.0000 

-0.55 0.0 -0.5500 0.0000 -0.5500 0.0000 -0.5497 0.0001 

-0.45 0.0 -0.4500 0.0000 -0.4500 0.0000 -0.4497 0.0002 

-0.35 0.0 -0.3500 0.0000 -0.3500 0.0000 -0.3496 0.0002 

-0.25 0.0 -0.2500 0.0000 -0.2500 0.0000 -0.2495 0.0003 

-0.15 0.0 -0.1500 0.0000 -0.1500 0.0000 -0.1493 0.0004 

-0.05 0.0 -0.0500 0.0000 -0.0500 0.0000 -0.0491 0.0004 

0.05 0.0 0.0500 0.0000 0.0500 0.0000 0.0512 0.0005 

0.15 0.0 0.1500 0.0000 0.1500 0.0000 0.1515 0.0005 

0.25 0.0 0.2500 0.0000 0.2500 0.0000 0.2517 0.0005 

0.35 0.0 0.3500 0.0000 0.3500 0.0000 0.3519 0.0004 

0.45 0.0 0.4500 0.0000 0.4500 0.0000 0.4519 0.0004 

0.55 0.0 0.5500 0.0000 0.5500 0.0000 0.5518 0.0003 

0.65 0.0 0.6500 0.0000 0.6500 0.0000 0.6516 0.0003 

0.75 0.0 0.7500 0.0000 0.7500 0.0000 0.7512 0.0002 

0.85 0.0 0.8500 0.0000 0.8500 0.0000 0.8506 0.0002 

0.95 0.0 0.9500 0.0000 0.9500 0.0000 0.9451 0.0002 
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Figure 5.8: Case 5.1.2. The relationship between the RMS errors and the number 
of boundary nodes, calculated by NMFS ( : ; : ). 
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Figure 5.8 shows RMS errors of the results obtained using the NMFS. The errors are 

already less than  with  and the solution converges to the analytical 

solution with the increasing number of the nodes. A comparison of the NMFS results 

with the MFS results is shown in Table 5.4. 

 Table 5.4: Case 5.1.2. RMS errors of MFS and NMFS solutions. 

Number of boundary 

nodes ( ) 

MFS NMFS 

 

 

 

 

200 0.0002 0.0001 1.2641 0.3357 

300 0.0000 0.0000 0.5809 0.1673 

400 0.0001 0.0001 0.3504 0.1046 

500 0.0003 0.0008 0.2400 0.0732 

600 0.0006 0.0016 0.1774 0.0550 

700 0.0015 0.0048 0.1379 0.0432 

800 0.0001 0.0002 0.1111 0.0351 

900 0.0054 0.0161 0.0920 0.0292 

1000 0.0036 0.0024 0.0778 0.0249 

1100 0.0007 0.0005 0.0670 0.0215 

1200 0.0028 0.0018 0.0584 0.0188 

1300 0.0253 0.0498 0.0515 0.0166 

1400 0.0005 0.0020 0.0459 0.0148 

1500 0.0030 0.0020 0.0412 0.0133 

1600 0.0011 0.0035 0.0373 0.0121 

1700 0.0002 0.0006 0.0339 0.0110 

1800 0.0005 0.0003 0.0311 0.0101 

1900 0.0017 0.0022 0.0286 0.0093 

2000 0.0004 0.0003 0.0264 0.0086 

5.3.2  Example 5.2: Bi-material Problem 

We split Example 5.2 into three different cases. These cases were studied in [Berger 

and Karageorghis (2001)] for plane strain problems. We consider the problem of two 

anisotropic materials in a square . The materials are 

taken to have cubic anisotropy, with  II 2

12 12.14 N/mc   

I 2

66 7.54 N/mc   and II 2

11 24.65 N/m ,c    II 2

66 12.47 N/mc  . The 

distance of the fictitious boundary from the true boundary for the MFS is set 
I II 5
M M

R R d  . The radius of the square disk for the distributed area source covering 

each node is set to 
I II /5R R d  . The simple solution constants, used in calculation 

of the diagonal coefficients, are defined as 4 m
x y

c c  . 

310 200N 

N  4( 10 )xe 
4( 10 )ye  4( 10 )xe 

4( 10 )ye 

( 1m,1m) ( 1m,1m)   

I 2

11 16.84 N/m ,c 
II 2

12 14.73 N/m ,c 
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Case 5.2.1: Dirichlet Boundary Conditions 

We consider the solution of the governing equations in the previously defined square, 

subject to the boundary conditions I II

x x xu u p  , I II

y y yu u p   on all the boundary 

points (see Figure 5.9). A plot of the deformation, obtained with the analytical 

solution and the numerical solutions with MFS and NMFS is shown in Figure 5.10 

for the case with ,  nodes.  

 
Figure 5.9: Case 5.2.1. Scheme of the square subject to Dirichlet boundary 

conditions. 

 points are selected inside the domain along the line  with 

 to compare the MFS solution with the NMFS solution (see 

Table 5.5). 

 

Figure 5.10: Case 5.2.1.The analytical solution and the numerical solution of MFS 

and NMFS with ,  ( : collocation points; : source points in 

MFS; : MFS solution; : NMFS solution). 
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Table 5.5: Case 5.2.1. The analytical solution and the numerical solutions with 

MFS and NMFS. 

 

 

MFS NMFS 

 

 

 

 

0.0 -0.95 0.0000 -0.9585 -0.0841 -0.9620 

0.0 -0.85 0.0000 -0.8776 -0.1808 -0.8779 

0.0 -0.75 0.0000 -0.7992 -0.2859 -0.7987 

0.0 -0.65 0.0000 -0.7227 -0.3849 -0.7215 

0.0 -0.55 0.0000 -0.6476 -0.4705 -0.6461 

0.0 -0.45 0.0000 -0.5735 -0.5366 -0.5718 

0.0 -0.35 0.0000 -0.4998 -0.5795 -0.4983 

0.0 -0.25 0.0000 -0.4260 -0.5982 -0.4250 

0.0 -0.15 0.0000 -0.3518 -0.5939 -0.3515 

0.0 -0.05 0.0000 -0.2770 -0.5765 -0.2768 

0.0 0.05 0.0000 -0.1763 -0.5347 -0.1828 

0.0 0.15 0.0000 -0.0500 -0.5019 -0.0521 

0.0 0.25 0.0000 0.0766 -0.4859 0.0739 

0.0 0.35 0.0000 0.2034 -0.4741 0.2005 

0.0 0.45 0.0000 0.3300 -0.4598 0.3272 

0.0 0.55 0.0000 0.4559 -0.4337 0.4533 

0.0 0.65 0.0000 0.5806 -0.3858 0.5785 

0.0 0.75 0.0000 0.7036 -0.3096 0.7019 

0.0 0.85 0.0000 0.8242 -0.2058 0.8228 

0.0 0.95 0.0000 0.9422 -0.0905 0.9484 

Case 5.2.2: Mixed Boundary Conditions – Stress in y direction 

Next, we consider a tension problem in the same region. We prescribe the tractions 

 and  on the two vertical sides  and
 

,  and  on the side ,  on 

the other boundary points (see Figure 5.11). A plot of the deformation, obtained with 

the analytical solution and the numerical solutions with MFS and NMFS, is shown in 

Figure 5.12 for the case with ,  nodes.  

xp yp 4( 10 )xu  yu 4( 10 )xu  yu

I I 20 N/mx yt t  II II 20 N/mx yt t  1mxp 

1mxp   I 20 N/mxt  I 21 N/myt  1 myp 
II II 0 mx yu u 

80N 
I II

20N
 
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Figure 5.11: Case 5.2.2. Scheme of a square subject to mixed boundary conditions. 

 points are selected inside the domain along the line  with 

to compare with the MFS solution. The solution at these 

points are given in Figure 5.6.  

  

Figure 5.12: Case5. 2.2. The analytical solution and the numerical solution of MFS 

and NMFS with ,  ( : collocation points; : source points in 

MFS; : MFS solution; : NMFS solution). 
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Table 5.6: Case 5.2.2. The analytical and the numerical solution with MFS and 

NMFS. 

 
 

MFS NMFS 

 
 

 
 

-0.95 1.0 -0.1012 0.1937 -0.0714 0.1499 

-0.85 1.0 -0.0902 0.1885 -0.0662 0.1553 

-0.75 1.0 -0.0801 0.1850 -0.0605 0.1581 

-0.65 1.0 -0.0701 0.1818 -0.0540 0.1590 

-0.55 1.0 -0.0600 0.1789 -0.0469 0.1590 

-0.45 1.0 -0.0495 0.1764 -0.0392 0.1584 

-0.35 1.0 -0.0389 0.1743 -0.0311 0.1577 

-0.25 1.0 -0.0280 0.1726 -0.0226 0.1569 

-0.15 1.0 -0.0169 0.1714 -0.0140 0.1563 

-0.05 1.0 -0.0056 0.1708 -0.0051 0.1560 

0.05 1.0 0.0056 0.1708 0.0038 0.1559 

0.15 1.0 0.0169 0.1714 0.0126 0.1562 

0.25 1.0 0.0280 0.1726 0.0213 0.1567 

0.35 1.0 0.0389 0.1743 0.0299 0.1574 

0.45 1.0 0.0495 0.1764 0.0380 0.1581 

0.55 1.0 0.0600 0.1789 0.0458 0.1586 

0.65 1.0 0.0701 0.1818 0.0531 0.1587 

0.75 1.0 0.0801 0.1850 0.0597 0.1577 

0.85 1.0 0.0902 0.1885 0.0657 0.1549 

0.95 1.0 0.1012 0.1937 0.0715 0.1494 

 

Case 5.2.3: Mixed Boundary Conditions – Stress in x direction 

For the final case, we consider the same anisotropic material system described above 

but with more complicated, mixed boundary conditions. Namely, on the rectangular 

domain described above, we take 
 
along  and , 

 along  and , and along the edge , we 

take the mixed boundary conditions  and  (see Figure 

5.13). A plot of the deformation, obtained with the analytical solution and the 

numerical solution with MFS and NMFS is shown in Figure 5.14 for the case with 

,  nodes. The solution along  is shown in Table 5.7. 

xp yp
xu yu

xu yu

I I 0 mx yu u  1myp  1mxp  

II II 0 mx yu u  1myp   1mxp   1mxp 

I II 21 N/mx xt t  I II 0 my yu u 

80N 
I II

20N
  1mxp 
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Figure 5.13: Case 5.2.3. Scheme of geometry and mixed boundary conditions. 

 

Figure 5.14: Case 5.2.3: The analytical solution and the numerical solution of MFS 

and NMFS with ,  ( : collocation points; : source points in 

MFS; : MFS solution; : NMFS solution). 
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Table 5.7: Case 5.2.3. The numerical solutions with MFS and NMFS. 

 
 

MFS NMFS 

 

 

 

 

1.0 -0.95 0.7049 0.0000 0.5520 0.0000 

1.0 -0.85 1.6853 0.0000 1.5743 0.0000 

1.0 -0.75 2.4329 0.0000 2.3528 0.0000 

1.0 -0.65 3.0792 0.0000 2.9956 0.0000 

1.0 -0.55 3.6183 0.0000 3.5391 0.0000 

1.0 -0.45 4.0914 0.0000 4.0019 0.0000 

1.0 -0.35 4.4906 0.0000 4.3967 0.0000 

1.0 -0.25 4.8488 0.0000 4.7353 0.0000 

1.0 -0.15 5.1557 0.0000 5.0333 0.0000 

1.0 -0.05 5.4988 0.0000 5.3181 0.0000 

1.0 0.05 5.9330 0.0000 5.5174 0.0000 

1.0 0.15 6.1175 0.0000 5.8453 0.0000 

1.0 0.25 6.1016 0.0000 5.8914 0.0000 

1.0 0.35 5.9262 0.0000 5.7469 0.0000 

1.0 0.45 5.5883 0.0000 5.4292 0.0000 

1.0 0.55 5.0819 0.0000 4.9395 0.0000 

1.0 0.65 4.4101 0.0000 4.2699 0.0000 

1.0 0.75 3.5354 0.0000 3.4008 0.0000 

1.0 0.85 2.4617 0.0000 2.2826 0.0000 

1.0 0.95 1.0173 0.0000 0.7162 0.0000 

 

The example 5.2 shows good agreement between the solutions of MFS and NMFS 

for a bi-material. One can observe that in Figure 5.10, Figure 5.12 and Figure 5.14, 

the NMFS solution almost coincides with the MFS solution. 

5.4  Discussion 

Example 5.1 shows good agreement of both NMFS and MFS solutions with the 

analytical solution. Example 5.2 shows good agreement between MFS and NMFS 

solution for a bi-material. The maximum absolute difference in displacements 

between the values of MFS and NMFS in Table 5.5 on the line  are 

0.0000 m,xu   0.0066 m.yu   The maximum absolute difference in 

displacements between the values of MFS and NMFS in Table 5.6 on the line 

 are  0.0433 m.yu  The maximum absolute difference in 

displacements between values of MFS and NMFS, given in Table 5.7 on the outer 

boundary of  are  0.0000 myu  . 

xp yp 2( 10 )xu 
2( 10 )yu  2( 10 )xu 

2( 10 )yu 

0 mxp 

1myp  0.0298 m,xu 

1mxp  0.0029 m,xu 
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5.5  Conclusions 

The NMFS for isotropic problems is extended to solve the 2D linear anisotropic 

elasticity problems in this chapter. The fundamental solutions for anisotropic 

problems are more complex than for isotropic ones. We can not obtain the exact 

expression of desingularized fundamental solution It is found by numerical methods. 

The selection of reference field has to be carefully chosen and not all reference 

solutions are appropriate in NMFS. So we will improve the NMFS, called Improved 

NMFS (INMFS), for isotropic and anisotropic problems in next chapter. Then the 

NMFS or INMFS will be used in the future for calculation of multi-grain 

deformation [Mura (1987)] problems in metals, with realistic grain shapes, obtained 

from the microscope images. It represents an alternative to the recent development 

direction of T-Trefftz Voronoi cell finite elements [Dong and Atluri (2011a); Dong 

and Atluri (2011b); Dong and Atluri (2013)] for macro- & micromechanics of 

inhomogenous media with inclusions and cracks. The problems with arbitrarily 

shaped inhomogeneities in the form of elastic inclusions, rigid inclusions and voids, 

as discussed in [Dong and Atluri, (2012)] will be numerically implemented. 



 

 

6.  Improved Non-singular Method 

of Fundamental Solutions 

6.1  Introduction 

The purpose of this chapter is improvement of the NMFS [Liu and Šarler (2013)] for 

two-dimensional isotropic and anisotropic linear elasticity problems. Because of the 

limitations of NMFS, that does not perform well for inclusions and voids problems 

and because of the computational effort needed for solving the three systems of 

algebraic equations, the INMFS is developed. This method is based on the idea of 

[Kim (2013)] for potential problems. In steady state potential problems, the balance 

of the derivatives of the potential field values at the boundary should be zero. 

However, in the present solid mechanics problems, the balance of the tractions on the 

boundary should be zero. This idea, together with the assumption of the constant 

value of the traction near the boundary node allowed for a simple calculation of the 

diagonal elements of the matrix of fundamental tractions for the Neumann boundary 

conditions. From this consideration, the values of the fundamental tractions in 

singular points are obtained. This novel INMFS represents an effective upgrade of 

NMFS for problems with inclusions and voids. INMFS method reduces the 

computation time of NMFS method since the system of equations has to be solved 

only once instead of three times.  

 

Five examples are used to demonstrate the feasibility and accuracy of the INMFS. 

The first and the fourth examples are used to show the feasibility for single domain 

problems of isotropic and anisotropic cases. The second example is about the 

isotropic pressurized cylinder problem to show the advantages as compared with the 

MFS and the NMFS. In these three examples, the INMFS solutions are compared to 

the MFS solution, the NMFS solutions and analytical solutions. In the third and the 

fifth examples, isotropic and anisotropic elastic/rigid inclusions and void problems 

are solved by the INMFS. They show good agreement of INMFS solutions with MFS 

solutions. 

6.2  Solution Procedure 

The governing equations of the isotropic elasticity problems are given in Eq. (3.3) 

(3.4) and for anisotropic elasticity problems in Eqs. (3.5) (3.6). Kelvin's fundamental 

solution Eqs. (3.9) is used in solution of the isotropic governing equations, and the 

fundamental solution in Eq. (3.21) is used in solving anisotropic governing equations. 
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The desingularization is performed as in Chapter 4.2 for isotropic problems and in 

Chapter 5.2 for anisotropic problems. 

 

The diagonal terms , 
 
in Eqs. (4.15) (4.16) are in 

case of NMFS determined indirectly for collocation points on . Invoking the fact 

that the boundary integration of the forces on the body should vanish in mechanical 

equilibrium, we can improve the NMFS by solving the following system 

 
1 1

( ) ( , ) ( , ) 0
N N

x xx m n n xy m n n

n n

t d T d T d 

 

   

        p p p p p  (6.1) 

 
1 1

( ) ( , ) ( , ) 0.
N N

y yx m n n yy m n n

n n

t d T d T d 

 

   

        p p p p p  (6.2) 

Eqs. (6.1)(6.2) should be satisfied since these represent the equilibrium equations. 

The traction conditions are always satisfied if we write 

  (6.3) 

  (6.4) 

and  can be evaluated as 

  (6.5) 

 

 

 (6.6) 

 

 

 (6.7) 

 

 

 (6.8) 

Solution procedure for a bi-material is the same as described in Chapter 3.5. 

6.3  Numerical Examples 

6.3.1  Example 6.1: Single Isotropic Material 

Example 6.1 is the same as Case 4.1.1 in Example 4.1 (see Figure 4.2). A plot of the 

RMS errors of boundary points, obtained with the numerical solutions with NMFS 

and INMFS is shown in Figure 6.1, and the values are given in Table 6.1. The 
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number of boundary nodes used is from 100 to 1924. The radius of the circular disk 

for the distributed area source covering each node is set to . 
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Figure 6.1: Example 6.1. The relationship between the RMS errors of boundary 

points and the number of boundary nodes, calculated by NMFS and INMFS 

(NMFS: : , :  . INMFS: : , : ). 

Figure 6.1 shows RMS errors of boundary points obtained using the NMFS and 

INMFS. The solution converges to the analytical solution with the increasing number 

of the nodes. In this case, both the results of  and 
 
obtaied with INMFS are not 

better than the NMFS results for boundary points. But the results of INMFS for  

is better than NMFS for points on the line  (see Figure 

6.2 and Table 6.2). On the other hand, the NMFS can’t solve the external problems. 

And the INMFS can solve these problems very well. 
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Table 6.1: Example 6.1. RMS errors of MFS, NMFS and INMFS solutions for 

boundary points with 
5MR d , / 5R d . 

Number 
of 

boundary 

nodes  

( ) 

MFS NMFS INMFS 

 

 

 

 

 

 

100 0.0001 0.0001 0.3812 0.6467 1.9429 4.6479 

196 0.0000 0.0000 0.2044 0.3672 1.1073 2.5512 

292 0.0000 0.0000 0.1408 0.2595 0.7833 1.7660 

388 0.0067 0.0073 0.1078 0.2017 0.6090 1.3531 

484 0.0086 0.0055 0.0875 0.1654 0.4995 1.0979 

580 0.0001 0.0001 0.0737 0.1405 0.4242 0.9243 

676 0.0000 0.0000 0.0638 0.1222 0.3690 0.7986 

772 0.0005 0.0002 0.0562 0.1082 0.3268 0.7032 

868 0.0007 0.0003 0.0503 0.0972 0.2935 0.6283 

964 0.0181 0.0139 0.0455 0.0882 0.2664 0.5679 

1060 0.0849 0.0556 0.0416 0.0808 0.2440 0.5183 

1156 0.0002 0.0004 0.0383 0.0746 0.2252 0.4766 

1252 0.0004 0.0005 0.0355 0.0693 0.2091 0.4412 

1348 0.1234 0.0840 0.0331 0.0647 0.1952 0.4108 

1444 0.0003 0.0003 0.0310 0.0606 0.1831 0.3843 

1540 0.0003 0.0004 0.0292 0.0571 0.1724 0.3610 

1636 0.0001 0.0002 0.0275 0.0540 0.1629 0.3404 

1732 0.0000 0.0001 0.0261 0.0512 0.1545 0.3221 

1828 0.0001 0.0001 0.0248 0.0486 0.1469 0.3056 

1924 0.3393 0.2868 0.0236 0.0464 0.1400 0.2908 
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Figure 6.2: Example 6.1. The relationship between the RMS errors in domain 

points  and the number of boundary nodes, calculated 

by NMFS and INMFS.  (NMFS: : , :  . INMFS: : , : ). 
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Table 6.2: Example 6.1. RMS errors of MFS, NMFS and INMFS solutions for 

domain points with 5MR d , / 5R d . 

Number 

of 

boundary 

nodes 

( ) 

MFS NMFS INMFS 

 

 

 

 

 

 

100 0.0001 0.0001 0.5183 4.0917 0.6170 3.8754 

196 0.0000 0.0000 0.2148 2.2766 0.3346 2.1505 

292 0.0033 0.0019 0.1395 1.5666 0.2276 1.4734 

388 0.0007 0.0003 0.0999 1.1949 0.1734 1.1197 

484 0.0129 0.0034 0.0775 0.9662 0.1402 0.9027 

580 0.0048 0.0070 0.0633 0.8113 0.1177 0.7561 

676 0.0006 0.0004 0.0535 0.6993 0.1014 0.6504 

772 0.0034 0.0032 0.0463 0.6146 0.0891 0.5706 

868 0.0034 0.0013 0.0409 0.5482 0.0794 0.5082 

964 0.0420 0.0139 0.0366 0.4949 0.0717 0.4581 

1060 0.0160 0.0163 0.0331 0.4510 0.0653 0.4170 

1156 0.0346 0.0182 0.0303 0.4143 0.0599 0.3827 

1252 0.1029 0.0855 0.0279 0.3831 0.0554 0.3536 

1348 0.0651 0.0556 0.0259 0.3563 0.0515 0.3286 

1444 0.0184 0.0040 0.0241 0.3331 0.0481 0.3069 

1540 0.0164 0.0115 0.0226 0.3126 0.0451 0.2878 

1636 0.0049 0.0047 0.0213 0.2946 0.0425 0.2710 

1732 0.3685 0.0693 0.0201 0.2785 0.0402 0.2561 

1828 0.0092 0.0028 0.0190 0.2641 0.0381 0.2427 

1924 0.0192 0.0296 0.0181 0.2511 0.0362 0.2307 
 

6.3.2  Example 6.2: Isotropic Pressurized Cylinder Problem 

In this example, consider the hollow cylinder shown in Figure 6.3. The inner radius 

is denoted as 
 
and outer radius . The cylinder is subjected to an 

internal pressure 100 MpaF  . The analytical solutions for the problems are given 

as (in Cartesian coordinate system, see [Aliabadi (2002)] and Figure 6.3). 
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where , cos /xp r  . Elastic media is defined by , 

. 

 

We consider a solution of the Navier’s equations in this cylinder subject to the 

boundary conditions  and  when  and  on the side of 

; 
 
and  when  and  on the side of 

 
(because the solution of the PDE is on our case also solution plus a constant); 

 
and  on the other points of the side ; 2cos N/mxt F 

 
and 2sin N/myt F   on the side of .  

 

12or   
4ir   

100MPaF   

 

Figure 6.3: Example 6.2. A pressurized cylinder. 

A plot of the deformation, obtained with the analytical solution and the numerical 

solutions with MFS, NMFS and INMFS is shown in Figure 6.4 for the case with 32 

nodes. The distance of the fictitious boundary from the true boundary for the MFS is 

set . The radius of the circular disk for the distributed area source covering 

each node is set to . 

2 2

x y
r p p  730000 MpaE 

0 32v  .

20 N/mxt  0 mmyu  0  

or r 0 mmxu  20 N/myt  2  / 3 2 /
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ir r
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Figure 6.4: Example 6.2. The analytical solution and the numerical solution of 

MFS, NMFS and INMFS with  ( : collocation points; : source points in 

MFS; : analytical solution; : MFS solution; : NMFS solution; : INMFS 

solution). 
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Figure 6.5: Example 6.2. The relationship between the RMS errors and the number 

of boundary nodes for boundary points, calculated by NMFS and INMFS (NMFS: 

: , :  . INMFS: : , : ). 

From Figure 6.4, we can see that the result of MFS is unacceptable. This is because 

the hole inside is too small to accommodate the source points. The location of the 
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source points for MFS in the domain would lead to wrong results. On the other side, 

the result of INMFS are much better than the NMFS. 

 

A plot of the RMS errors of boundary points, obtained with the numerical solutions 

with NMFS and INMFS is shown in Figure 6.5 and the values are given in Table 6.3. 

The number of boundary nodes used is from 64 to 1280 . The radius of the circular 

disk for the distributed area source covering each node is set to .  

Table 6.3: Example 6.2. The RMS errors of Boundary points.  

Number 

of 

boundary 

nodes    e  

( ) 

MFS NMFS INMFS 

 
 

 
 

 
 

64 0.4310 0.3651 0.4955 0.5793 0.0823 0.0780 

128 0.0000 0.0000 0.5961 0.5644 0.0394 0.0372 

192 0.0000 0.0000 0.6132 0.5644 0.0260 0.0245 

256 0.0000 0.0000 0.6213 0.5648 0.0194 0.0182 

320 0.0000 0.0000 0.6261 0.5645 0.0154 0.0145 

384 0.0000 0.0000 0.6299 0.5646 0.0128 0.0121 

448 0.0000 0.0000 0.6327 0.5640 0.0110 0.0103 

512 0.0000 0.0000 0.6321 0.5600 0.0096 0.0090 

576 0.0000 0.0000 0.5775 0.5213 0.0085 0.0080 

640 0.0000 0.0000 0.5326 0.5760 0.0077 0.0072 

704 0.0000 0.0000 0.6135 0.5677 0.0070 0.0066 

768 0.0000 0.0000 0.6234 0.5676 0.0064 0.0060 

832 0.0000 0.0000 0.6279 0.5666 0.0059 0.0055 

896 0.0000 0.0000 0.6306 0.5662 0.0055 0.0051 

960 0.0000 0.0000 0.6324 0.5654 0.0051 0.0048 

1024 0.0000 0.0000 0.6325 0.5635 0.0048 0.0045 

1088 0.0000 0.0000 0.6193 0.5542 0.0045 0.0042 

1152 0.0000 0.0000 0.6014 0.5333 0.0042 0.0040 

1216 0.0000 0.0000 0.5621 0.5728 0.0040 0.0038 

1280 0.0000 0.0000 0.6155 0.5677 0.0038 0.0036 

 

From Figure 6.5 we see, that the solution of INMFS converges to the analytical 

solution with the increasing number of the nodes and it is much better than the 

solution of NMFS. 
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6.3.3  Example 6.3: Isotropic Elastic/Rigid Inclusions and Void 

Problems 
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Figure 6.6: Example 6.3. A square plate with a circlar hole (or elastic/rigid 

inclusion) under tension, isotropic material. 

We consider a square with the side length  in Example 6.3. We distinguish 

five cases. In the first one, the square domain is a homogenous materal. In other 

cases, there is a circular domain with radius  inserted in the square. In all 

of these cases, we consider the solution of the Navier’s equations in this square 

subject to the boundary conditions 
 
on the points  and

; 
 
on the points 

 
and ; 

xt F ,  

on the east sides of the square with ; xt F  ,  on the west sides 

of the square with ; ,  on the other points of north 

and south sides of the square with  and . The following 

parameters have been used , . The distance of the fictitious 

boundary from the true boundary in case of MFS is ,
 . 0.5 PaF   

(see Figure 6.6). 

Case 6.3.1: Single Domain Problem 

In Case 6.3.1, the square domain is a homogenous materal with properties 

. A plot of the deformation is shown in Figure 6.7. 
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Figure 6.7: Case 6.3.1. The deformation, calculated with MFS and INMFS with 

,  ( : collocation points; : source points in MFS; 

: MFS solution; : INMFS solution). 

From Figure 6.7, we see that INMFS results almost coincide with the MFS results in 

case with no inclusions. We also see that the method can capture the elastic inclusion 

problem with the same property as the elastic square matrix. 

Case 6.3.2: Void Problem 

In Case 6.3.2, the circular domain is empty. The square domain has the same 

properties as in Case 6.3.1. A plot of the deformation is shown in Figure 6.8. 

 

In Figure 6.8, 540N   was used for MFS and 108N   was used for INMFS. It is 

because there is not enough space inside for source points for MFS when 108N   

and the result is not clear in the picture for INMFS when 540N  . It can be 

observed from Figure 6.8, that MFS solution and INMFS solution almost coincide. 

The maximum absolute difference in displacements between MFS solution and 

INMFS solution at the boundary are , , when 

540N  . The results of domain points are given in Table 6.4. 

 x 

y
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Figure 6.8: Case 6.3.2. The deformation, calculated with MFS and INMFS, for 

void problem with , 108N   ( : collocation points; : 

source points in MFS; : MFS solution; : INMFS solution). 

Table 6.4: Case 6.3.2. The deformation for domain point in Figure 6.9. 

 

 

MFS INMFS 
 

 

 

 

 

 

0.00 0.50 -0.0003 -0.0969 -0.0000 -0.0954 0.0003 0.0015 

0.25 0.50 0.1206 -0.0894 0.1211 -0.0883 0.0005 0.0012 

0.50 0.50 0.2432 -0.0808 0.2438 -0.0801 0.0006 0.0007 

0.50 0.25 0.2559 -0.0379 0.2562 -0.0374 0.0002 0.0005 

0.50 0.00 0.2661 -0.0004 0.2661 -0.0000 0.0000 0.0004 

 

In this case, the boundary conditions are symmetrical about the x and y axises. So  

should be 0 at point  on the axises of symmetry of y and and  should 

equal 0 at point  on the axises of symmetry of x. From Table 6.4, we see 

the results with INMFS are better than with the MFS for this case. 

Case 6.3.3: Elastic Inclusion Problem with the Same Inclusion and Matrix 

Properties 

In Case 6.3.3, the circular domain is elastic material with properties 

. The square domain is the same as in the Case 6.3.1. A plot of the 

deformation is shown in Figure 6.9. 500N   for MFS and 100N   for INMFS 

are used for Figure 6.9, Figure 6.10 and Figure 6.11. 
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Figure 6.9: Case 6.3.3. The deformation, calculated with MFS and INMFS, for the 

elastic inclusion problem with  ( : collocation 

points; : source points in MFS; : MFS solution; : INMFS solution). 

In Figure 6.9, the two materials have the same property. The INMFS result is used to 

compare with the MFS and almost the same as the MFS result. On the other hand, 

the INMFS result is also used to compare with itself for the single material in the 

Figure 6.7. The maximum absolute difference in displacements between Figure 6.7 

and Figure 6.9 calculated by INMFS at the boundary are  and 

0.0005 myu   under the case . 

Case 6.3.4: Elastic Inclusion Problem with Different Inclusion and Matrix 

Properties 

 

Figure 6.10: Case 6.3.4. The deformation, calculated with MFS and INMFS, for 

elastic inclusion problem with  and  (

: collocation points; : source points in MFS; : MFS solution; : INMFS 

solution). 
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In Case 6.3.4, the circular domain is elastic material with properties 

. The square domain is the same as in Case 6.3.1. A plot of the deformation 

is shown in Figure 6.10. 

Case 6.3.5: Rigid Inclusion Problem 

In Case 6.3.5, the circular inclusion is a rigid material and the square domain is the 

same as in Case 6.3.1. A plot of the deformation is shown in Figure 6.11. 

 

Figure 6.11: Case 6.3.5. The deformation, calculated with MFS and INMFS, for 

rigid inclusion problem with   ( : collocation points; : 

source points in MFS; : MFS solution; : INMFS solution). 

In Figure 6.10 and Figure 6.11, the harder elastic and the rigid inclusion problems are 

presented. The INMFS was used to compare with the MFS. And the results are 

almost the same. But more boundary nodes was used for MFS than for INMFS. 

6.3.4  Example 6.4: Single Anisotropic Material 

In Example 6.4, we use the same example as Example 5.1 (see Figure 5.3 and Figure 

5.6). A selection of  field points inside the domain along the line  

with  is taken for computing the RMS error. The number of 

boundary nodes used is from 200 to 2000. 
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Case 6.4.1: Dirichlet Boundary Conditions 

 

 

 

R
M

S 
Er

ro
r 

Nunber of the Bounday Nodes N   

Figure 6.12: Case 6.4.1. The relationship between the RMS errors of domain points 

 and  and the number of boundary nodes, 

calculated by NMFS and INMFS. (NMFS: : , :  . INMFS: : , 

: ). 
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Table 6.5: Case 6.4.1. RMS errors of MFS, NMFS and INMFS solutions with 

5MR d , 
 

/ 5R d . 

Number 

of 

boundary 

nodes       

( ) 

MFS NMFS INMFS 

 

 

 

 

 

 

200 0.0000 0.0000 0.4749 0.0000 1.6637     0.0000 

300 0.0001 0.0001 0.1722 0.0000 0.6793     0.0000 

400 0.0000 0.0000 0.1075 0.0000 0.4821     0.0000 

500 0.0004 0.0012 0.0766 0.0000 0.3831 0.0000 

600 0.0000     0.0000 0.0582 0.0000 0.3186     0.0000 

700 0.0005     0.0006 0.0461 0.0000 0.2728     0.0000 

800 0.0000     0.0000 0.0377 0.0000 0.2385     0.0000 

900 0.0001     0.0004 0.0316 0.0000 0.2119     0.0000 

1000 0.0000 0.0001 0.0269 0.0000 0.1906 0.0000 

1100 0.0014 0.0003 0.0233 0.0000 0.1732     0.0000 

1200 0.0001     0.0004     0.0205     0.0000 0.1588     0.0000 

1300 0.0003     0.0005     0.0182     0.0000 0.1465     0.0000 

1400 0.0025     0.0004     0.0162     0.0000 0.1360     0.0000 

1500 0.0003 0.0001 0.0146     0.0000 0.1269 0.0000 

1600 0.0000 0.0001     0.0133 0.0000 0.1190     0.0000 

1700 0.0011     0.0009     0.0121 0.0000 0.1120     0.0000 

1800 0.0002     0.0001     0.0111     0.0000 0.1057     0.0000 

1900 0.0006     0.0001     0.0103     0.0000 0.1001     0.0000 

2000 0.0007 0.0005 0.0095 0.0000 0.0951 0.0000 
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Case 6.4.2: Mixed Boundary Conditions 
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Figure 6.13: Case 6.4.2. The relationship between the RMS errors of domain points 

 and  and the number of boundary nodes, 

calculated by NMFS and INMFS.  (NMFS: : , :  . INMFS: : 

, : ). 
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Table 6.6: Case 6.4.2. RMS errors of MFS, NMFS and INMFS solutions with

5MR d , / 5R d . 

Number 

of 

boundary 

nodes 

( N  ) 

MFS NMFS INMFS 

 
 

 
 

 
 

200 0.0009     0.0027     1.2641 0.3357     2.4085     0.8312     

300 0.0003     0.0002     0.5809 0.1673     1.4388     0.6534     

400 0.0022     0.0081     0.3504 0.1046     1.1108     0.5289     

500 0.0015 0.0014 0.2400 0.0732     0.9101 0.4424 

600 0.0014     0.0042     0.1774 0.0550 0.7710     0.3796     

700 0.0015     0.0013     0.1379 0.0432     0.6688     0.3322     

800 0.0009     0.0015     0.1111 0.0351     0.5904     0.2952     

900 0.0004     0.0009     0.0920 0.0292     0.5285     0.2656     

1000 0.0175 0.0438 0.0778 0.0249     0.4784 0.2414 

1100 0.0011     0.0007     0.0670 0.0215 0.4369     0.2212     

1200 0.0096     0.0192     0.0584 0.0188     0.4020     0.2041     

1300 0.0032     0.0126     0.0515 0.0166     0.3723     0.1895     

1400 0.0112     0.0105     0.0459 0.0148     0.3467     0.1768     

1500 0.2267 0.3238 0.0412 0.0133     0.3244 0.1657 

1600 0.0062     0.0084     0.0373 0.0121 0.3048     0.1559     

1700 0.0067     0.0169     0.0339 0.0110     0.2874     0.1473     

1800 0.0124     0.0294     0.0311 0.0101     0.2719     0.1395     

1900 0.0070     0.0046     0.0286 0.0093     0.2580     0.1325     

2000 0.0074 0.0050 0.0264 0.0086 0.2454 0.1262 

 

In both of the above cases, the solution converges to the analytical solution with the 

increasing number of the nodes. The results of  and , computed with INMFS 

are not more accurate than the ones with NMFS. However the external problems, the 

void problems and the inclusion problems cannot be solved by NMFS. And the 

INMFS is suitable for solving these types of problems. 

4( 10 )xe 
4( 10 )ye  4( 10 )xe 

4( 10 )ye  4( 10 )xe 
4( 10 )ye 

xu
yu
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6.3.5  Example 6.5: Anisotropic Elastic/Rigid Inclusions and Void 

Problems 

 

0

x

y

t F

t




 

0 1.r   

0 0,
x y
t t   

0

0

x

y

u

t




 

0 0,
x y
t u   

 

Figure 6.14: Example 6.5. A square plate with a circular hole (or elastic/rigid 

inclusion) under tension, anisotropic material. 

Consider a square with the side length  under the symmetrical tensile stresses 

in Example 6.5. We distinguish five cases. In the first case, the square domain is a 

homogenous cubic anisotropic materal. In other cases, there is a circular domain with 

the radius  in the square. The defined problems is symmetry around x as 

well as y axis. Respectively, a quarter of this domain can be selected for 

computational purposes, demonstrating the feasibility of INMFS for this type of 

problems. On the other side, a quarter of this domain is chosen to allow the source 

points of MFS to be located outside the domain. We consider the boundary 

conditions xt F ,  on the east side of the square with ; 

,  on the north side of the square with ; , 

 on the west side of the square with ; ,  

on the south side of the square with . The following parameters have been 

used , . The distance of the fictitious boundary from the true 

boundary in case of MFS is ,
 . 0.5 PaF   (see Figure 6.14). 

Case 6.5.1: single domain 

In Case 6.5.1, the square domain is a homogenous cubic anisotropic materal with 

properties   
2

66 7.54 N/mc  . A plot of the 

deformation is shown in Figure 6.15. 

2ma 

0.1mr 

20 N/myt  1mxp 

20 N/mxt  20 N/myt  1myp  0 mxu 

20 N/myt  0 myp  20 N/mxt  0 myu 

0 mxp 

/ 5R d
II II / 5R d

4MR d
II II4MR d

2

11 16.84 N/m ,c  2

12 12.14 N/m ,c 
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Figure 6.15: Case 6.5.1. The deformation, calculated with MFS and INMFS, 

 ( : collocation points; : source points in MFS; : MFS solution; : 

INMFS solution). 

From Figure 6.15, we see that INMFS results almost coincide with the MFS results 

in case with no inclusions. We see also that the method can capture the elastic 

inclusion problem with the same property as the elastic square matrix.  

Case 6.5.2: Void Problem 

In Case 6.5.2, the circular domain is empty. The square domain has the same 

properties as in Case 6.5.1. A plot of the deformation is shown in Figure 6.16. 

 

Figure 6.16: Case 6.5.2. The deformation, calculated with MFS and INMFS, for 

void problem with 120N   ( : collocation points; : source points in MFS; : 

MFS solution; : INMFS solution). 

 

120N   

 
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It can be observed from Figure 6.16 that the MFS solution and the INMFS solutions 

almost coincide. And the maximum absolute difference in displacements between 

MFS solution and INMFS solution at the boundary are 0.0005xu  ,. 0.0133yu   

The results of domain points are given in Table 6.7.  

Table 6.7: Case 6.5.2. The deformation of domain points. 

  
MFS INMFS 

  
    

0.15 0.15 0.0138 -0.0096 0.0129 -0.0070 0.0009 0.0026 

0.25 0.25 0.0197 -0.0147 0.0188 -0.0121 0.0009 0.0026 

0.35 0.35 0.0262 -0.0199 0.0251 -0.0172 0.0011 0.0027 

0.45 0.45 0.0327 -0.0249 0.0315 -0.0222 0.0012 0.0028 

0.55 0.55 0.0388 -0.0296 0.0380 -0.0270 0.0009 0.0025 

0.65 0.65 0.0446 -0.0339 0.0443 -0.0318 0.0003 0.0021 

0.75 0.75 0.0501 -0.0380 0.0506 -0.0364 0.0005 0.0016 

0.85 0.85 0.0553 -0.0421 0.0567 -0.0409 0.0015 0.0013 

0.95 0.95 0.0602 -0.0467 0.0628 -0.0452 0.0026 0.0014 

Case 6.5.3: Elastic Inclusion Problem with the Same Inclusion and Matrix 

Properties 

In Case 6.5.3, the circular inclusion domain is elastic material with properties 

  
II 2

66 7.54 N/mc  . The square domain is the same 

as in Case 6.5.1. A plot of the deformation is shown in Figure 6.17. 

 

Figure 6.17: Case 6.5.3. The deformation, calculated with MFS and INMFS, for 

elastic inclusion problem with   and

II 2

66 66 7.54 N/mc c  ,  ( : collocation points; : source points in MFS; 

: MFS solution; : INMFS solution). 

xp yp
xu yu

xu yu
xu yu

II 2

11 16.84 N/m ,c  II 2

12 12.14 N/m ,c 

II 2

11 11 16.84 N/m ,c c  II 2

12 12 12.14 N/mc c 

120N  


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In Figure 6.17, the two materials have the same property. The INMFS result is used 

to compare with the MFS and the results almost coincide on the boundary. The 

maximum absolute difference in displacements between MFS solution and INMFS 

solution at the boundary are , . On the other hand, 

the INMFS result is also used to compare with itself for the single material in Figure 

6.15 The maximum absolute difference in displacements between Figure 6.15 and 

Figure 6.17 calculated by INMFS on the boundary are , 

, when . 

Case 6.5.4: Elastic Inclusion Problems with Different Inclusion and Matrix 

Properties 

In Case 6.5.4, the circular domain is elastic material with properties 

 II 2

66 12.47 N/mc  , . The square domain 

is the same as in Case 6.5.1. A plot of the deformation is shown in Figure 6.18. 

 

Figure 6.18: Case 6.5.4. The deformation, calculated with MFS and INMFS, for 

elastic inclusion problem with   
2

66 7.54 N/mc 

and  
 

II 2

66 12.47 N/mc  .  ( : 

collocation points; : source points in MFS; : MFS solution; : INMFS 

solution). 

In Figure 6.18, the results of INMFS almost coincide with the MFS results. The 

maximum absolute difference in displacements between MFS solution and INMFS 

solution at the boundary are . , . 

Case 6.5.5: Rigid Inclusion Problems 

In Case 6.5.5, the circular domain is a rigid material and the square matrix is the 

same as in Case 6.5.1. A plot of the deformation is shown in Figure 6.19.

 

0.0058 mxu  0.0033 myu 

0.0014 mxu 

45.5160 10 myu   120N 

II 2

11 24.65 N/m ,c  II 2

12 14.73 N/m ,c  II 0.3 

 

2

11 16.84 N/m ,c  2

12 12.14 N/mc 

II 2

11 24.65 N/m ,c  II 2

12 14.73 N/m ,c  120N  



0.0047 mxu  0.0037 myu 
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Figure 6.19: Case 6.5.5. The deformation, calculated with MFS and INMFS, for 

rigid inclusion problems with  ( : collocation points; : source points in 

MFS; : MFS solution; : INMFS solution). 

In Figure 6.19, the maximum absolute difference in displacements between MFS 

solution and INMFS solution at the boundary are , . 

6.4  Discussion 

Examples 6.1 and 6.4 show good agreement of INMFS, NMFS and MFS solutions 

with the analytical solution in a single material problem. Example 6.2 shows 

feasibility and accuracy of the INMFS solution in isotropic pressurized cylinder 

problem. Examples 6.3 and 6.5 show the advantages of the INMFS solution for the 

elastic/rigid inclusions and the void problems. 

6.5  Conclusions 

The NMFS is improved in this chapter for solving 2D linear isotropic and anisotropic 

elasticity problems. The singularities are removed in the same way as in the NMFS. 

The improvement reflects in the calculation of the diagonal elements of the matrix of 

fundamental tractions for the Neumann boundary conditions by assumption that the 

sum of all forces on the body should vanish in the mechanical equilibrium. The 

INMFS essentially gives better results for elastic/rigid inclusions and void problems 

than NMFS. On the other hand, the INMFS also reduces the computing time. Two 

novel methods have been represented. Both of these two methods can be used to 

solve the multi-grain problems as described in the next chapter.  

 

  

 

120N  



0.0202 mxu  0.0121myu 
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7.  Non-singular Method of 

Fundamental Solutions and 

Improved Non-singular Method of 

Fundamental Solutions for Multi-

grain Problems 

7.1  Introduction 

The purpose of this chapter is to demonstrate the application of developed NMFS 

and INMFS to the multi-grain problems. It is achieved by solving coupled PDEs for 

each of the grains. The coupling of PDEs is achieved through the boundary 

conditions on the interfaces of each of the grains. The multi-grain problem can form 

a part of the macroscopic deformation model. 

 

Five examples are used to demonstrate the feasibility and the accuracy of the NMFS 

and the INMFS for the multi-grain problems. In the first example, the NMFS is used 

to solve four and nine grains isotropic problems and the solutions are compared with 

MFS solution with the normal stress and shear stress boundary conditions, 

respectively. In the second example, the same case is used for anisotropic problem. 

In the third and fourth examples, the INMFS is used to solve the nine grains isotropic 

problems. But the grains have irregular geometries. The last example is more 

complex. There are nine grains with different properties in the test domain and the 

properties of one of these nine grains are given in different Cartesian coordinate 

systems. All the NMFS and INMFS solutions compare well with MFS solution, and 

turn out to give similar results as the MFS results in all tests. At last, a simulation of 

deformation of a peace of a realistic microstructure of a spring steel C45 on a 50μm 

square with 19 grains is given. 

7.2  Governing Equations and Solution Procedure 

We consider a two-dimensional domain  with boundary , divided into  sub-

domains with boundaries 

  M
I II M   
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I II I-II I- (M-I)-( )M M M            as shown in Figure 7.1. Each 

of the sub-domains is filled with an isotropic or anisotropic, idealy ellastic material 

with different material properties, in general. The governing equations are formally 

the same as Eqs. (3.3) (3.4) for isotropic materials and Eqs.(3.5) (3.6) for anisotropic 

materials with 

  (7.1) 

and  

  (7.2) 

The boundary  is divided into two not necessarily connected parts . 

On the part  the Dirichlet boundary conditions are given, and on the part  the 

Neumann boundary conditions are given 

  (7.3) 

where  

  (7.4) 

On the interface between different regions, displacement continuity and traction 

equilibrium conditions have been assumed, 

  (7.5) 

Kelvin's fundamental solutions in Eq. (3.9) are used to solve the isotropic governing 

equations, and the fundamental solution in Eq. (3.21) is for anisotropic governing 

equations. The parameters are different when they belong to the different grains. 
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Figure 7.1: A scheme of a multiregional problem. Each of the sub-domains can 

have different elastic properties, including different type and orientation of 

anisotropy. 

Solution procedure is the same as described in Chapter 4.2 and 4.3 for NMFS and 

Chapter 6.2 for INMFS. 

7.3  Numerical Examples 

A square with side  centered around is considered in 

Chapter 7.3.  

7.3.1  Example 7.1: NMFS for Isotropic Multi-grain Problems 

We distinguish three cases. In the first one, the homogenous square is occupied by 

one material, with the material properties , in the second one, the 

square is split into four parts with the same material properties as in the first case 

 ; and in the third one, the 

square is split into nine parts with the same material properties as in the first case 

 . The distance of the fictitious 

boundary from the true boundary for the MFS is set to ,

. The following parameters have been used ,

, 
I I IX IX 4 m

x y x y x y
c c c c c c       . 

 

I  

I  
II  

III  

II  
III  

M  

M  

I II  
II III  

3 ma  0 m, 0 mx yp p  

21 N/mE  0.3 

I II III IV 21 N/m ,E E E E   
I II III IV 0.3v v v v   

I II IX 21 N/m ,E E E    I II IX 0.3v v v   

5
M

R d
I I IX IX5 5, ,
M M

R d R d  5/R d

I I IX IX5 5/ , , /R d R d 
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Case 7.1.1: Normal Stress Problem 

 

Figure 7.2: Case 7.1.1. The deformation calculated with MFS and NMFS, for a 

one-domain case with  and  ( : collocation points, 

: source points, : MFS solution, : NMFS solution). 

 

Figure 7.3: Case 7.1.1. The deformation calculated with MFS and NMFS, for a 

nine-domain case  and 

 ( : collocation points, : source points, : MFS solution, : NMFS 

solution). The position of the source points in MFS is around squares of the square 

physical sub-domains 

 

21 N/m ,E  0.3  120N  



 

I II III IV 21 N/m ,E E E E    I II IX 0.3v v v   

120N   
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We consider the solution of the Navier's equations in this square subject to the 

following boundary conditions:
 

,  on the north side boundary 

with ; ,  on the south side boundary with 

, ,  on the east side boundary with  

and on west side boundary with . A plot of the deformation, calculated 

with the defined three cases is shown in Figure 7.2, Figure 7.3 and Figure 7.4, 

respectively.  

 

Figure 7.4: Case 7.1.1. The deformation calculated with MFS and NMFS, for a 

nine-domain case  and 

 ( : collocation points, : source points, : MFS solution, : NMFS 

solution). The position of the source points in MFS is around squares of the square 

physical sub-domains. 

A good agreement between the solution for a one domain region and the solution 

with the four and nine regions in ideal mechanical contact and with the same material 

properties can be observed in Figure 7.2, Figure 7.3 and Figure 7.4. The maximum 

absolute difference in displacements of NMFS between values in Figure 7.2 and 

Figure 7.3 at the outer boundary are   

and between Figure 7.2 and Figure 7.4  

, respectively. 

Case 7.1.2: Shear Stress Problem 

We consider the solution of the Navier's equations in this square subject to the 

following boundary conditions:
 

,  on the north side boundary 

with ; ,  on the south side boundary with , 

the others are the same with Case 7.1.1. A plot of the deformation, calculated with 

the defined three cases is shown in Figure 7.5, Figure 7.6 and Figure 7.7, respectively.  

0 mxu  0.1myu  

1.5 myp  0 mxu  0.1myu 

1.5 myp   20 N/mxt  20 N/myt  1.5 mxp 

1.5 mxp  

 

I II IX 21 N/m ,E E E    I II IX 0.3v v v   

120N   

49.5197 10 m,xu  
46.1311 10 m,yu  

0.0017 m,xu  0.0012 myu 

0.0012myu 

0.1mxu   0 myu 

1.5 myp  0.1mxu  0 myu  1.5 myp  
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Figure 7.5: Case 7.1.2. The deformation calculated with MFS and NMFS, for a 

one-domain case with  and  ( : collocation points, : source 

points, : MFS solution, : NMFS solution). 

 

Figure 7.6: Case 7.1.2. The deformation calculated with MFS and NMFS, for a 

four-domain case  , and

 ( : collocation points, : source points, : MFS solution, : NMFS 

solution). The position of the source points in MFS is around squares of the square 

physical sub-domains. 

21 N/m ,E  120N  



I II III IV 21 N/m ,E E E E    I II III IV 0.3      

120N   



Numerical Examples 

111 

 

Figure 7.7: Case 7.1.2. The deformation calculated with MFS and NMFS for a 

nine-domain case  and 

 ( : collocation points, : source points, : MFS solution, : NMFS 

solution). The position of the source points in MFS is around squares of the square 

physical sub-domains. 

A good agreement between solution for a one domain region and solutions with four 

and nine subregions in ideal mechanical contact and with the same material 

properties is observed in Figure 7.5, Figure 7.6 and Figure 7.7. The maximum 

absolute difference in displacements of NMFS between values in Figure 7.5 and 

Figure 7.6 at the outer boundary are  ,and between 

Figure 7.5 and Figure 7.7  ,respectively. 

7.3.2  Example 7.2: NMFS for Anisotropic Multi-grain Problems 

We define three cases. In the first one, the homogenous square is occupied by one 

material, with the material properties  2

12 12.14 N/m ,c 

2

66 7.54 N/mc  , in the second one, the square is split into four parts with the same 

material properties as in the first case  

I II III IV 2

12 12 12 12 12.14 N/mc c c c    , 
I II III IV 2

66 66 66 66 7.54 N/mc c c c    , and in the third 

one, the square is split into nine parts with the same material properties as in the first 

case  
I II IX 2

66 66 66 7.54 N/mc c c    . The distance of the fictitious boundary from the true 

boundary for the MFS is set to
 . The following 

parameters have been used . 
I I IX IX 4 m

x y x y x y
c c c c c c       . 

 

I II IX 21 N/m ,E E E    I II IX 0.3v v v   

120N   

0.0016 m,xu  0.0011myu 

0.0031m,xu  0.0014 myu 

2

11 16.84 N/m ,c 

I II III IV 2

11 11 11 11 16.84 N/m ,c c c c   

I II IX 2

11 11 11 16.84 N/m ,c c c    I II IX 2

12 12 12 12.14 N/m ,c c c   

I I IX IX5 , 5 , , 5M M MR d R d R d  

I I IX IX/ 5, /10, , /10R d R d R d  
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Case 7.2.1: Normal Stress Problem 

 

Figure 7.8: Case 7.2.1. The deformation calculated with MFS and NMFS, for a 

one-domain case with  2

12 12.14 N/m ,c   
2

66 7.54 N/mc   and 

 ( : collocation points, : source points, : MFS solution, : NMFS 

solution). 

 

Figure 7.9: Case 7.2.1. The deformation calculated with MFS and NMFS, for a 

four-domain case  

I II III IV 2

12 12 12 12 12.14 N/m ,c c c c     
I II III IV 2

66 66 66 66 7.54 N/mc c c c     and  (

: collocation points, : source points, : MFS solution, : NMFS solution). 

The position of the source points in MFS is around squares of the square physical 

sub-domains. 

 

2

11 16.84 N/m ,c 

120N   

 

I II III IV 2

11 11 11 11 16.84 N/m ,c c c c   

120N 

 
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We consider the same boundary conditions as in Case 7.1.1. A plot of the 

deformation, calculated with the defined three cases is shown in Figure 7.8, Figure 

7.9 and Figure 7.10, respectively.  

  

A good agreement between solution for a one domain region and solutions with four 

and nine subregions in ideal mechanical contact and with the same material 

properties is observed in Figure 7.8, Figure 7.9 and Figure 7.10. The maximum 

absolute difference in displacements of NMFS between values in Figure 7.8 and 

Figure 7.9 at the outer boundary are , and between 

Figure 7.8 and Figure 7.10 , respectively. 

 

Figure 7.10: Case 7.2.1. The deformation calculated with MFS and NMFS for a 

nine-domain case  

 I II IX 2

66 66 66 7.54 N/mc c c     and  (

: collocation points, : source points, : MFS solution, : NMFS solution). The 

position of the source points in MFS is around squares of the square physical sub-

domains. 

 

 

 

0.0044 m,xu  0.0052 myu 

0.0062 m,xu  0.0054 myu 

 

I II IX 2

11 11 11 16.84 N/m ,c c c   

I II IX 2

12 12 12 12.14 N/m ,c c c    120N  


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Case 7.2.2: Shear Stress Problem 

 

Figure 7.11: Case 7.2.2. The deformation calculated with MFS and NMFS for a 

one-domain case with  2

12 12.14 N/m ,c   
2

66 7.54 N/mc   and 

 ( : collocation points, : source points, : MFS solution, : NMFS 

solution). 

We consider the same boundary conditions as in case 7.1.2. A plot of the 

deformation, calculated with the defined three cases is shown in Figure 7.11, Figure 

7.12 and Figure 7.13, respectively.  

 

Figure 7.12: Case 7.2.2. The deformation calculated with MFS and NMFS, for a 

four-domain case  

I II III IV 2

12 12 12 12 12.14 N/m ,c c c c     
I II III IV 2

66 66 66 66 7.54 N/mc c c c     and  

( : collocation points, : source points, : MFS solution, : NMFS solution). 

The position of the source points in MFS is around squares of the square physical 

sub-domains. 

 

2

11 16.84 N/m ,c 

120N   

I II III IV 2

11 11 11 11 16.84 N/m ,c c c c   

120N 

 
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Figure 7.13: Case 7.2.2. The deformation calculated with MFS and NMFS, for a 

nine-domain case  

 
I II IX 2

66 66 66 7.54 N/mc c c     and  (

: collocation points, : source points, : MFS solution, : NMFS solution). 

The position of the source points in MFS is around squares of the square physical 

sub-domains. 

A good agreement between solution for a one domain region and solutions with four 

and nine subregions in ideal mechanical contact and with the same material 

properties is observed in Figure 7.11, Figure 7.12 and Figure 7.13. The maximum 

absolute difference in displacements of NMFS values in Figure 7.11 and Figure 7.12 

at the outer boundary are , and between Figure 

7.11 and Figure 7.13  , respectively 

7.3.3  Example 7.3: INMFS for Isotropic Multi-grain Problems 

We define two cases. In the first one, the homogenous square is occupied by one 

material, with the material properties.  , in the second one, the 

square is split into nine irregular geometry parts with the same material properties as 

in the first case . The following 

parameters have been used . 

Case 7.3.1: Normal Stress Problem 

We consider the same boundary conditions as in case 7.1.1. A plot of the 

deformation, calculated with the defined two cases is shown in Figure 7.14 and 

Figure 7.15, respectively.  

 

I II IX 2

11 11 11 16.84 N/m ,c c c   

I II IX 2

12 12 12 12.14 N/m ,c c c    120N 

 

0.0079 m,xu  0.0346 myu 

0.0082 m,xu  0.0055 myu 

21 N/mE  0.3 

I II IX 21 N/m ,E E E   
І ІІ ІX 0.3     

/ 5,R d I I IX IX/ 5, , / 5R d R d 



NMFS and INMFS for Multi-grain Problems 

116 

 

Figure 7.14: Case 7.3.1. The deformation calculated with MFS and INMFS, for a 

one-domain case with  and  ( : collocation points, 

: source points, : MFS solution, : INMFS solution). 

 

Figure 7.15: Case 7.3.1. The deformation calculated with INMFS, for a nine sub-

domain case  , and  (

: collocation points, : NMFS solution).  

A good agreement between solution for a one domain region and solutions with nine 

irregular geometry subregions in ideal mechanical contact and with the same material 

properties is observed in Figure 7.14 and Figure 7.15. The maximum absolute 

difference in displacements of INMFS between values in Figure 7.14 and Figure 7.15 

at the outer boundary are  . 

 

21 N/m ,E  0.3  96N  



 

I II IX 21 N/m ,E E E    I II IX 0.3      96N 



0.0097 m,xu  0.0087 myu 



Numerical Examples 

117 

Case 7.3.2: Shear Stress Problem 

We consider the same boundary conditions as in case 7.1.2. A plot of the 

deformation, calculated with the defined two cases is shown in Figure 7.16 and 

Figure 7.17, respectively.  

 

Figure 7.16: Case 7.3.2. The deformation calculated with MFS and INMFS, for a 

one-domain case with   and  ( : collocation points, 

: source points, : MFS solution, : NMFS solution). 

 

Figure 7.17: Case 7.3.2. The deformation calculated with INMFS, for a nine sub-

domain case  , and  (

: collocation points, : NMFS solution). 

 

21 N/m ,E  0.3  96N  



 

I II IX 21 N/m ,E E E    I II IX 0.3      96N 


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A good agreement between solution for a one domain region and solutions with nine 

irregular geometry subregions in ideal mechanical contact and with the same material 

properties is observed in Figure 7.16 and Figure 7.17. The maximum absolute 

difference in displacements of INMFS between values in Figure 7.16 and Figure 7.17 

at the outer boundary are  . 

7.3.4  Example 7.4: INMFS for Anisotropic Multi-grain Problems 

We define two cases. In the first one, the homogenous square is occupied by one 

material, with the material properties  2

12 12.14 N/m ,c   

, in the second one, the square is split into nine irregular geometry 

parts with the same material properties as in the first case   
I II IX 2

11 11 11 16.84 N/m ,c c c     

I II IX 2

66 66 66 7.54 N/mc c c    . The distance of the fictitious boundary from the true 

boundary for the MFS is set to
 

I I IM IX/ 5, 5 , , 5 .M M MR d R d R d    The following 

parameters have been used I I IX IX/ 5, / 5, , / 5.R d R d R d    

. 

Case 7.4.1: Normal Stress Problem 

We consider the same boundary conditions as in case 7.1.1. A plot of the 

deformation, calculated with the defined two cases is shown in Figure 7.18 and 

Figure 7.19, respectively.  

 

Figure 7.18: Case 7.4.1. The deformation calculated with MFS and INMFS, for a 

one-domain case with  2

12 12.14 N/m ,c 
 

2

66 7.54 N/mc  , and

 ( : collocation points, : source points, : MFS solution, : NMFS 

solution). 

0.0099 m,xu  0.0038 myu 

2

11 16.84 N/m ,c 
2

44 7.54 N/mc 

I II IX 2

12 12 12 12.14 N/m ,c c c   

I I IX IX 4x y x y x yc c c c c c      

 

2

11 16.84 N/m ,c 

96N   
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Figure 7.19: Case 7.4.1. The deformation calculated with INMFS, for a nine sub-

domain case  

I II IX 2

66 66 66 7.54 N/mc c c    , and  ( : collocation points, : NMFS 

solution).  

A good agreement between solution for a one domain region and solutions with nine 

irregular geometry subregions in ideal mechanical contact and with the same material 

properties is observed in Figure 7.18 and Figure 7.19. The maximum absolute 

difference in displacements of INMFS between values in Figure 7.18 and Figure 7.19 

at the outer boundary are  . 

Case 7.4.2: Shear Stress Problem 

 

Figure 7.20: Case 7.4.2. The deformation calculated with MFS and INMFS, for a 

one-domain case with  2

12 12.14 N/m ,c   , and

 ( : collocation points, : source points, : MFS solution, : NMFS 

solution).  

 

I II IX 2

11 11 11 16.84 N/m ,c c c    I II IX 2

12 12 12 12.14 N/m ,c c c   

96N  

0.0100 m,xu  0.0067 myu 

 

2

11 16.84 N/m ,c  2

44 7.54 N/mc 

96N   



NMFS and INMFS for Multi-grain Problems 

120 

We consider the same boundary conditions as in case 7.1.2. A plot of the 

deformation, calculated with the defined two cases, is shown in Figure 7.20 and 

Figure 7.21, respectively.  

 

 

Figure 7.21: Case 7.4.2. The deformation calculated with INMFS, for a nine sub-

domain case   

 and  ( : collocation points, : NMFS 

solution). 

A good agreement between the solution for a one domain region and solutions with 

nine irregular geometry subregions in ideal mechanical contact and with the same 

material properties is observed in Figure 7.20 and Figure 7.21. The maximum 

absolute difference in displacements of INMFS between values in Figure 7.20 and 

Figure 7.21 at the outer boundary are  . 

7.3.5  Example 7.5: NMFS and INMFS for Anisotropic Multi-grain 

Problems with Different Properties 

In this example, we use the same domains as in example 7.3.2 and distinguish four 

cases, in which the middle part is orthotropic body with different properties. The 

other parts are cubic materials with (Aluminum) 69 Gpa
xx yy zz

E E E   , 

24 Gpa
xy yz xz

G G G   , . We considered the 

solution of the system (3.5) (3.6) in this square subject to the following boundary 

conditions 0 mxu  , 0.5 myu    on the north side boundary with 1.5 myp  ; 

0 mxu  , 0.5 myu   on the south side boundary with  and ,

 on the east side boundary with and west side boundary with
 

.  

 

I II IX 2

11 11 11 16.84 N/m ,c c c    I II IX 2

12 12 12 12.14 N/m ,c c c   

I II IX 2

44 44 44 7.54 N/mc c c    96N  

0.0102 m,xu  0.0102 myu 

0.334xy yx xz zx yz zyv v v v v v     

1.5myp   20N/mxt 

20N/myt  1.5mxp 

1.5mxp  
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Case 7.5.1: Central Sub-domain with the Same Properties in x and y directions 

In Case 7.5.1, the properties for the middle part are 200 Gpa
xx yy zz

E E E   , 

73 Gpa
xy yz xz

G G G    (steel) and
 

. A plot of 

the deformation is shown in Figure 7.22. 

 

Figure 7.22: Case 7.5.1. The deformation calculated with NMFS and INMFS with 

the same material properties in sub-domains ( : collocation points, : NMFS 

solution, : INMFS solution) 

Case 7.5.2: Central Sub-domain with Different Properties in x and y directions 

 

Figure 7.23: Case 7.5.2. The deformation calculated with NMFS and INMFS with 

the harder material in the center ( : collocation points, : NMFS solution, : 
INMFS solution). 

0.3xy yx xz zx yz zyv v v v v v     




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In Case 7.5.2, 200 Gpa 1.5=300 Gpa
xx

E   , 200 Gpa 0.5=100 Gpa
yy

E   , 

, , , ,

0.3 zx zzv v . A plot of the deformation is shown in Figure 7.23. 

Case 7.5.3: Central Sub-domain with Different Properties in x and y directions 

Due to Rotation of the Axes 

 

Figure 7.24: Case 7.5.3. Scheme of the sub-domains with different material 

properties and different orientations of anisotropy. 

Case 7.5.3 has the same properties with the second one, but the axis of central body 

is 'x  and 'y , respectively (see Figure 7.24). Then ' 300 Gpa,xxE  ' 100 Gpa,yyE  

' 200 Gpa,zzE  ' ' ' 73 Gpa,  xy yz xzG G G  ' ' 0.45, xy xzv v  ' ' 0.15, yx yzv v

' ' 0.3 zx zyv v . We use the Catesian coordinate system ,x y  as main coordinate 

system, and all the data were changed into the Catesian coordinate system ,x y  by 

rotating for 0, , ,
6 3 2

  
   in the calculation procedure. 

 

In Figure 7.25, the shape of the central part changed less than the same part in Figure 

7.22. And we get the consistent result by using NMFS and INMFS. In Figure 7.25, 

the central body has harder properties in x direction than in y direction. So when the 

rotation from  to 
2


    is performed, the y direction became harder and 

harder, and the displacement would be smaller and smaller. 

 

 

 

 

200 Gpa
zz

E  73 Gpa
xy yz xz

G G G   0 45.
xy xz

v v  0 15.
yx yz

v v 

 

x 

y 

x 
y 

  

x 

y 

0 

' 
' 



Numerical Examples 

123 

 

(a) NMFS result 

 

 

(b)  INMFS result 

Figure 7.25: Case 7.5.3. The deformation calculated with (a) NMFS and (b) INMFS 

with the hard material in the center and different  ( : collocation points, : , 

: 
6


  , :

3


  , :

2


  ). 

Case 7.5.4: Central Sub-domain with a Hole and the Different Properties on x 

and y directions 

Case 7.5.4 has the same properties as the second one, but there is a hole in the middle 

with radius 0 3 m.r  . 

   0 
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Figure 7.26: Case 7.5.4. The deformation calculated with NMFS and INMFS with 

a hole in the center of a hard body ( : collocation points, : NMFS and INMFS 

solutions).  

It is shown on Figure 7.26, that the NMFS doesn’t work in this case. But the INMFS 

can solve this problem very well. This is the advantage of INMFS compared with 

NMFS. 

7.4  Simulation of Deformation of a Section of a Realistic 

Microstructure 

The original material of a spring steel C45 is given in Figure 7.27. In this part we 

only use a 50 μm square of Figure 7.27 (see Figure 7.28). 

 

Figure 7.27: The original material.

 

 

(a): NMFS result (b): INMFS result 





Simulation of Deformation of a Section of a Realistic Microstructure 

125 

  

Figure 7.28: A square 50 μm part of the original material. 

This square contains 19 grains (see Figure 7.29). The 19 grains are of the same 

material with the properties of steel C45 at temperature 25 C 
3 2210 10 N/μmE   ,

0 29.v  . We distinguish two cases with normal stress and shear stress, respectively. 

The following parameters have been used .  

 

 

Figure 7.29：The square domain with 19 grains.  

5/R d
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Case 7.4.1: Normal Stress 

The boundary conditions: 0 mxu  , 5 myu    are imposed on the north side 

boundary with 25 myp  ; 0 mxu  , 5 myu   on the south side boundary with 

25 myp   ; , on the east side boundary with 25 mxp   

and on west side boundary with 25 mxp   . A plot of the deformation is shown in 

Figure 7.30 

 

Figure 7.30: Case 7.4.1. Microstructure problem. Normal deformation calculation 

with INMFS. 

Case 7.4.2: Shear Stress 

The boundary conditions: 5 mxu   , 0 myu   are imposed on the north side 

boundary with 25 myp  ; 5 mxu  , 0 myu   on the south side boundary with 

25 myp   ; , on the east side boundary with 25 mxp   

and on west side boundary with 25 mxp   . A plot of the deformation is shown in 

Figure 7.31 

20 N/mxt  20 N/myt 

20 N/mxt  20 N/myt 
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Figure 7.31: Case 7.4.1. Microstructure problem. Shear deformation calculation 

with INMFS. 

7.5  Discussion 

Examples 7.1 and 7.2 show good agreement of NMFS solutions with MFS solutions 

in multi-grain problems. Examples 7.3 and 7.4 show good agreement of INMFS 

solutions in multi-grain problem with single grain material. Example 7.5 

demonstrates the suitability of NMFS and INMFS for the multi-grain problem with 

different properties and the rotation of the axes of a coordinate system, and 

especially INMFS, for void problems. And in all of the discussed examples, not more 

than 120 bounday nodes were used. Because both NMFS and INMFS solutions 

converge with the increasing number of the nodes, the results would be better in case 

more boundary nodes would be used. Because of the feasibility and the accuracy of 

the INMFS, a simulation of deformation of a peace of a realistic microstructure of a 

spring steel C45 on a 50μm square with 19 grains were given in INMFS. 
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7.6  Conclusions 

The application of the NMFS and INMFS to solve the multi-grain problems is 

presented in this chapter. The most important is that both of the Dirichlet and 

Neumann boundary conditions on the interfaces for elastic inclusions and connected 

multi-grain problems are used in one system (3.41) to make sure that the matrix A  is 

square. So that the inverse of the A  can be calculated. A limitation that one 

boundary collocation point can belong to only two regions at once is considered in 

all the calculations. Respectively, the discretisation points have not been placed on 

the corners where three or more regions meet. All the tests show the feasibility and 

accuracy of NMFS and INMFS in different cases. One simulation under two 

different boundary conditions is presented in this chapter. The practical problems are 

more complex not only becase of the number of the grains but also because of the 

more complex geometries. The methods applied in this chapter can be used for 

modelling and simulation of much more complicated practical problems and this is 

also our work in the future. 

  



 

 

8.  Conclusions 

8.1  Performed Work 

The research described in this dissertation has been focused on development of a 

novel MFS for solving two-dimensional linear elasticity problems. The purpose of 

the developments is the use of the developed method for numerical modelling and 

simulation of deformation of microstructure of multi-grain materials such as metals. 

This approach enables to calculate the deformation of multi-grain materials as a 

function of the shape and mechanical properties of each of the grains that can be 

anisotropic and differently oriented. Respectively, the macroscopic mechanical 

response can be obtained from the defined properties of its microscopic constituent 

parts. The novelty of the developed approach is in the removal of the fictitious 

boundary where in MFS the poles of the fundamental solution are placed. The 

fictitious boundary represents the main drawback of MFS. This drawback makes the 

application of MFS to multi-grain materials very complicated. With the goal to make 

the artificial boundary coincide with the physical boundary of the grain are the 

singular point sources of the fundamental solution replaced by distributed sources 

over circular discs around the singularity. The magnitude and the shape of the 

fundamental solution inside the disk is adjusted by the average value of the domain 

integral of the fundamental solution over the disk and by coinciding of the shape of 

the related function with the fundamental solution and its first and second derivatives 

on the border of the disc. 

 

In case of displacement (Dirichlet) boundary conditions, the values of distributed 

sources are calculated directly and analytically for isotropic problems and 

numerically for anisotropic problems. In case of traction (Neumann) boundary 

conditions, the respective desingularized values of the derivatives of the fundamental 

solution in the coordinate directions, as required in the calculations, are calculated 

indirectly from the construction of two reference solutions of the linearly varying 

simple displacement fields in the first variant of the novel method, termed NMFS. 

However on the expense of solving three times the systems of algebraic equations in 

comparison with only one solution in MFS. In addition, the related reference fields 

have to be carefully chosen in order to get the proper solution. In the second variant 

of the novel method, termed INMFS, the respective desingularized values of the 

derivatives of the fundamental solution in the poles are calculated from the 

assumption that the sum of the forces on the body should vanish in mechanical 

equilibrium. The system of algebraic equations is solved only once as in the MFS 

and there is no need to employ the two reference solutions as in NMFS. A free 

parameter – radius of the desingularization disk appears in both non-singular 

methods. It turns out that a suitable choice for this parameter is around 20% of the 

distance between the neighbouring nodes on the boundary. 
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In order to demonstrate the feasibility, accuracy and convergence of the newly 

developed methods, the NMFS and the INMFS solutions are compared to the MFS 

solution and analytical solutions for a spectra of plane strain problems. Analysis of 

the method includes isotropic and anisotropic materials, single and multidomain 

problems. Special attention is devoted to problems with elastic or rigid inclusions as 

well as voids. A list of performed calculations is as follows: 

 

In Chapter 4 isotropic elastic material is considered. NMFS method for this type of 

materials is presented in detail. Two examples are presented to demonstrate the 

feasibility and the accuracy of NMFS. Example 4.1 tackles a single isotropic elastic 

domain with mixed boundary conditions and is divided into two cases: Case 4.1.1 

represents stretching and Case 4.1.2 bending, respectively. In Example 4.1, the 

results were compared with the analytical solutions and the results of MFS. The 

convergence rate is assessed by a root mean square error measure. It can be  

observed that the solution coverges to the analytical solution with the increasing 

number of the boundary nodes. Example 4.2 tackles a bi-material with mixed 

boundary conditions and is divided into two cases: In Case 4.2.1 normal stresses are 

applied and in Case 4.2.2 shear stresses are applied. The results of Example 4.2 were 

compared with the result of MFS to prove similar accuracy and convergence. 

 

In Chapter 5 anisotropic elastic material is considered. NMFS method for this type of 

material is presented in detail. Two examples are presented to demonstrate the 

feasibility and the accuracy of NMFS. In Example 5.1, stretching example with 

analytical solution for a single anisotropic elastic domain is discussed. The example 

is divided into two cases with Dirichlet (Case 5.1.1) and mixed (Case 5.1.2) 

boundary conditions. The same convergence is observed as for the isotropic material. 

The Example 5.2 considers a bi-material and is divided into three cases with Drichlet 

boundary conditions (Case 5.2.1) and mixed boundary conditions (stresses in x-

direction (Case 5.2.3) and y-direction (Case 5.2.2). The numerical results of these 

examples are compared with the result of MFS to prove similar accuracy and 

convergence as in NMFS.  

 

In Chapter 6 isotropic and anisotropic elastic materials are considered. INMFS 

method for both types of materials is developed. Five examples are presented to 

demonstrate the feasibility and the accuracy of INMFS. The Example 6.1. is dealing 

with isotropic material in single domain and is defined the same as Case 4.1.1. The 

Example 6.4 is dealing with anisotropic material in single domain and is defined the 

same as Example 5.1. The results are compared with the analytical solutions and the 

results of MFS and NMFS. The solution coverges to the analytical solution with the 

increasing number of the boundary nodes. An isotropic pressurized cylinder problem 

is used to demonstrate the advantages of the INMFS compared with MFS and NMFS 

in Example 6.2. The INMFS is used to solve the inclusions and void problems for 

isotropic and anisotropic materials in Example 6.3 and Example 6.5, respectively. 

 

In Chapter 7 isotropic and anisotropic multi-grain materials are considered. NMFS 

and INMFS methods for this type of problems were considerd. Five examples are 

presented to demonstrate the feasibility and the accuracy of NMFS and INMFS. 

Example 7.1 and Example 7.3 deal with NMFS and INMFS for the isotropic material, 
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respectively. In Examples 7.2 and 7.4, NMFS and INMFS are assessed for the 

anisotropic material, respectively. All the grains in these four examples have the 

same properties. And all of this four examples are divided into two cases with normal 

stresses and shear stresses. Example 7.5 is divided into five cases. Nine grains are 

used in all of the  five cases and the grain in the center has different properties with 

the other eight grains. In Case 7.5.1, the property of the central grain is the same in x 

and y direction. In Case 7.5.2, the property of the central grain is the different in x 

and y direction. Hirisontal direction has higher Young's modulus than the vertical 

direction. In Case 7.5.3, the rotation of the axes of a coordinate system of the central 

grain (with the same properties as in Case 7.5.2) is studied. In the final Case 7.5.5, 

the central grain with a void has the same property as in Case 7.5.2. Case 7.5.5 shows 

that INMFS can be use to solve more coplex problems as void problems. Because of 

the feasibility and the accuracy of the INMFS, a simulation of deformation of a peace 

of a realistic microstructure of a spring steel C45 on a square 50μm with 19 grains 

were given in INMFS. In these problems, a proper consideration of the boundary 

conditions on the interface is very important. We have to use both the displacement 

and the traction boundary conditions one the interfaces for elastic inclusions and 

connected multi-grain problems to make sure the respective algebraic equation 

system is square. In all the calculations, a limitation that one boundary collocation 

point can belong to only two regions at once is considered. Respectively, the 

discretisation points have not been placed on the corners where three or more regions 

meet.  

 

Both, the NMFS and the INMFS methods, turn out to give in engineering sence 

similar results than the classical MFS method in all spectra of the performed tests. 

Because INMFS is simpler and more efficient than the NMFS, INMFS is a preferred 

method for use.  

 

The represented work display a first use of MFS for solid mechanics problems 

without the fictitious boundary. The developed approach is clearly better than the 

classical finite element method for this type of problems, since discretisation is 

performed only on the boundary. The newly generated knowledge will be 

incorporated in microstructure deformation model, coupled with the macroscopic 

simulation system for continuous casting, hot rolling and heat treatment of metals. 

8.2  Originality 

Both versions of the non-singular MFS, developed in this dissertation, were not 

known before for isotropic and anisotropic elasticity problems. Moreover, because of 

the complexity of the fundamental solution, particularly for anisotropic problems, 

only a few publications dealth with related MFS before. The main originality of the 

method is discretisation of the boundary of the elastic domain only, which enables 

the method to be straightforwardly used for many bodies in contact. Future 

application of these methods to realistic industrial micromechanics problems is very 

important, since the methods reduces the amount of discretisation, needed in the 

classical mesh based methods. The INMFS will serve as a new powerful tool for 

simulations devoted to engineering design, fabrication, and analysis of a wide range 
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of materials including polycrystalline, composite, geotechnical, biological, and 

electronic materials. Optimum microstructures and their properties can be, by use of 

modeling and simulation, forecasted rather than found by trial and error. Fracture and 

fatigue of solids and structures, martensitic transformations, interphases in 

composites, and dispersion hardening of alloys are examples of the phenomena that 

are being elucidated and qualified by micromechanics. 

8.3  Advantages 

The NMFS and the INMFS have many advantages. The most notable are: 

 

 There is no need to put the source points of fundamental solution outside the 

physical domain. It thus avoids the problems of artificial boundary. The 

problems, where there is a limited space for source points (like small 

inclusions) can be dealt with in a straightforward manner. This is for such 

situations not possible with the classical MFS. 

 

 Collocation points coincide with the source points. Respectively, the 

generation of the nodes is relatively simple and easy to program. Except in 

the desingularization procedure, there are no integrations involved in the 

method. 

 

 There is no need to know the neighbouring or any other point information for 

integrating (desingularizing) the fundamental solution on a circular disk.  

 

 The method requires no domain discretisation as for example FEM. So it is 

more easily applicable for microstructure problems with high number and 

high geometrical complexity of each of the grains. 

8.4  Intended Work 

The novel INMFS is in the present dissertation used for simulating a deformation of 

a part of a realistic microstructure on an elastic square domain with 19 grains. It 

represents first steps in using this method for practical problems. In our future work, 

the INMFS will be upgraded for solving the 3D microstructures as done in paper 

[Benedetti and Aliabadi (2013)]. But the meshing was needed in above method and 

will not be needed by INMFS. Then the INMFS will be applied for the 3D 

microstructures with thousands of grains (see Figure 8.1). 
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Figure 8.1: An example of microstructure of a material with thousands of grains. 

For this purpose, the desingularisation of a 3D fundamental solutions is needed, 

which would be more complex than the 2D one. Also the discretisation will be more 

complex.  

 

Since many materials behave not only lineraly elastic, but experience some other, 

more complex form of rheology, such as plasticity, this will also be taken into 

account in the future. For this purpose, the works of Kołodzej would serve as a 

starting point (see [Kołodziej and Gorzelanczyk (2012); Kołodziej, Jankowska and 

Mierzwiczak (2013)]). 

8.5  Publications 

A part of the developments in this dissertation have been already published in the 

following journal papers: 

 

LIU, Qingguo, ŠARLER, Božidar. Non-singular Method of Fundamental Solutions 

for anisotropic elasticity. /Engineering analysis with boundary elements/, ISSN 0955-

7997, 2014, vol. 45, pp. 68-78, doi: 10.1016/j.enganabound.2014.01.020 

[COBISS.SI-ID 3222779] 

 

LIU, Qingguo, ŠARLER, Božidar. Non-singular method of fundamental solutions 

for two-dimensional isotropic elasticity problems. /Computer modeling in 

engineering & sciences. CMES/, ISSN 1526-1492. 2013, vol. 91, pp. 235-267. 

[COBISS.SI-ID 2750203]  
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technologies/, ISSN 1580-2949, 2013, vol. 47, pp. 789-793. . [COBISS.SI-ID 

2980091] 

 

and are prepared for publication 

 

LIU, Qingguo, ŠARLER, Božidar. Improved non-singular method of fundamental 

solutions for two-dimensional isotropic elasticity problems and application for 

elastic/rigid inclusions or void problems. / Computational Mechanics/. 
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2013, 1 p. [COBISS.SI-ID 3032315] 
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metals and technology, 2013, pp. 122. [COBISS.SI-ID 3067643]  
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Appendix 

 

Figure A: Case 4.1.1. The known two reference solutions of the governing 

equation ( : initial layout, : ( ) 4 m, ( ) 0 m,x x yu p u  p  p
 

:

( ) 0 m, ( ) 4 m.x y yu u p  p  p ), used in calculation of the desingularized values of 

fundamental solution in traction boundary condition points, that give proper NMFS 

solution. 

 

Figure B: Case 4.1.1. The known two reference solutions of the governing 

equation ( : initial layout, : ( ) , ( ) 0 m,x x yu p u p  p
 

:

( ) 0 m, ( ) .x y yu u p p  p ), used in calculation of the desingularized values of 

fundamental solution in traction boundary condition points, that give erroneous 

NMFS solution. 

  

  
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Figure C: Case 4.1.1. The analytical solution, the numerical solution with MFS and 

the erroneous numerical solution with NMFS with 100N   and 0 mx yc c  . (

 : collocation points, : source points in MFS,  : analytical solution,  : MFS 

solution, : NMFS solution) 
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