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Abstract 
 
Title: Natural hydrochemical background and dynamics of groundwater in Slovenia 
 
A 3-year (2009–2011) geochemical and isotopic study of Slovenian groundwaters has been conducted in 
the aquifers composed of the most representative lithological and lithostratigraphic units observed in 
Slovenia. Groundwater sampling network consists of 87 sampling locations, including springs, boreholes 
and wells, which are evenly distributed throughout the territory. For every sampling location its 
characteristics of recharge area were studied in detail. 
 
Geochemical analyses of groundwater were conducted in order to determine the impact of lithological 
structure of aquifer, recharge area climatic characteristics and land use on the groundwater chemical and 
isotopic composition.  
Sampled groundwater is mostly modern (recent) which has been verified by the 3H activity in groundwater. 
Groundwater stable isotope composition (δ18O and δ2H) and d-excess values provided the information on 
recharge areas characteristics (altitude, mixing with surface waters) and source of precipitation recharge 
(prevailing Atlantic and Mediterranean air masses). Also three different groundwater isotopic altitude 
effects zones were defined, as well as the groundwater isotope continental effect.  
Groundwater concentrations of Ca2+, Mg2+, and HCO3

- are mostly of natural origin and depend on 
dissolution of carbonate rocks in relation with the altitude, soil temperature, partial pressure of CO2 from 
the atmosphere and soil, amount of precipitation, and vegetation cover. The share of carbon contributions 
from dissolution of carbonate rocks, degradation of organic matter in aquifers, and the atmosphere on the 
groundwater, has been calculated with dissolved carbon concentration (DIC) and isotopic composition of 
carbon (δ13C). Major product of silicate weathering in groundwater is Si and to a lesser extends Na+ and 
K+. Groundwater Na+ and Cl- can be linked to vicinity of the sea, and groundwater SO4

2- to weathering of 
gypsum and sulphide minerals. Prevailing sources of groundwater Na+, Cl-, NO3

-, K+, and SO4
2- in 

Slovenian groundwaters are mostly of anthropogenic origin. Use of salts for deicing roads during winter 
time contributes to groundwater Na+ and Cl-. Excessive use of fertilizers, application of manure and slurry 
on the fields, leakages from sewage systems, septic tanks, and waste waters, contribute to elevated 
concentrations of groundwater NO3

-, K+, SO4
2, Na+ and Cl-. 

The prevailing process influencing Slovenian groundwater chemical in isotopic composition is dissolution 
of carbonate rocks which are the most abundand rock type found in Slovenia. In more than 80 % of all 
water samples the concentrations of Ca2+, Mg2+, and HCO3

- in groundwater are therefore increased. To 
lesser extent the dissolution of silicate minerals is observed in groundwater from NNE and NE part of 
Slovenia (Pohorje Mt. and Prekmurje region) where igneous and metamorphic rocks dominate (~14 % of 
all water samples). In the recharge areas with clays in the NNE part of Slovenia the processes of ion 
exchange reactions are observed (~1 % of all water samples). In the NE part of Slovenia in old 
groundwater from deep aquifers redox conditions are present (~2 % of all water samples). Groundwater 
chemical composition in lowland alluvial plains in central, E, and NE part of Slovenia reflects agricultural 
activities and fertilizers uses, because the soil and climate are favourable for agricultural harvest 
production. Additionally urban land use is reflected in groundwater geochemistry which might be a 
consequence of decrepit and improper sewage systems or septic tanks (~10 % of all water samples). 
Urban influence is also observed in groundwater in the central part of Slovenia which is the most densely 
populated city in Slovenia (~1 % of all water samples).  
 
According to measured values of geochemical parameters in groundwater and their occurance the typical 
chemical and isotopic values were determined according to a certain prevailing lithological and 
lithostratigraphic units in the recharge areas of sampled groundwater. Additionally the groundwater natural 
background levels for selected chemical parameters, which sources are mostly anthropogenic, are 
determined. Results of spatial variations of studied parameters are illustrated as hydrochemical thematic 
maps. 
 
Keywords: groundwater, Slovenia, chemical and isotopic composition, natural chemical background level. 
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Izvleček 
 
Naslov: Naravna hidrokemijska ozadja in dinamika podzemnih vod Slovenije  
 
V obdobju od 2009 do 2011 so potekale geokemijske in izotopske raziskave slovenskih podzemnih vod v 
vodonosnikih, katerih geološka zgradba vključuje najbolj reprezentativne litološke in litostratigrafske enote 
v Sloveniji. V vzorčno mrežo je bilo vključenih 87 vzorčnih mest (izviri, vrtine, vodnjaki), ki so bili 
enakomerno razporejeni po celotnem slovenskem ozemlju. Napajalno zaledje vseh vzorčnih mest je bilo 
podrobno preučeno. 
 
Analiza geokemijskih parametrov v podzemni vodi je bila izvedena z namenom, da bi ugotovili v kolikšni 
meri vplivajo litološka zgradba vodonosnika, klimatske karakteristike napajalnega zaledja in raba tal na na 
kemijsko in izotopsko sestavo podzemne vode.  
Preiskovana podzemna voda je večinoma mlada (recentna), kar je bilo potrjeno z meritvijo aktivnosti tritija 
(3H) v vodi. S pomočjo izotopske sestave podzemne vode (δ18O in δ2H) in devterijevim presežkom so bile 
ugotovljene karakteristike napajalnega zaledja (nadmorska višina, mešanje vode s površinsko vodo) in 
izvor vode v padavinah, kjer so bile kot prevladujoče določene zračne mase iz severnega Atlantika in iz 
območja Sredozemlja. Prav tako so bili v podzemni vodi določeni trije višinski izotopski efekti in 
kontinentalni efekt.   
Pojavljanje Ca2+, Mg2+ in HCO3

- v podzemni vodi je naravnega izvora, koncentracije pa so odvisne od 
raztapljanja karbonatnih kamnin glede na nadmorsko višino, temperaturo tal, parcialnega tlaka v atmosferi 
in v tleh, količine padavin ter vegetacijskega pokrova. S pomočjo raztopljenega anorganskega ogljika 
(DIC) in izotopske sestave ogljika (δ13C) v podzemnih vodah se je ocenil delež doprinosa ogljika iz 
procesov raztapljanja karbonatov, razgradnje organske snovi v vodonosniku in vpliva atmosfere na 
podzemno vodo. Glavni produkti raztapljanja silikatnih mineralov v podzemni vodi so Si in v manjši meri 
Na+ in K+. Povišane koncentracije Na+ in Cl- v podzemni vodi so lahko posledica neposredne bližine morja, 
ter vir SO4

2- raztapljanje sadre in drugih sulfidnih mineralov. Na povišane koncentracije Na+, Cl-, NO3
-, K+ 

in SO4
2- v slovenskih podzemnih vodah v veliki meri vplivajo antropogeni dejavniki. Uporaba soli za 

soljenje cest v zimskem času vpliva na povišano koncentracijo Na+ in Cl- v podzemni vodi. Prekomerna 
uporaba gnojil, nanašanje gnoja in gnojevke na polja, izpusti iz slabo tesnjenih kanalizacijskih sistemov in 
greznic ter odpadne vode, so lahko vzrok povišanih koncentracij NO3

-, K+, SO4
2, Na+ in Cl- v podzemni 

vodi. 
Glavni procesi, ki vplivajo na kemijsko in izotopsko sestavo slovenskih podzemnih vod so raztapljanje 
karbonatnih kamnin, ki so v Sloveniji najbolj razširjene. V več kot 80 % vzorcih podzemne vode je bila 
koncentracija Ca2+, Mg2+ in HCO3

- namreč povišana. V manjši meri vpliva na kemijsko sestavo podzemnih 
vod raztapljanje silikatnih mineralov v S-SV in SV delu države (Pohorje in Prekmurje), kjer v napajalnem 
zaledju prevladujejo magmatske in metamorfne kamnine (~14 % vzorcev podzemne vode). V S-SV delu 
Slovenije, kjer v napajalnem zaledju prevladujej glina, so opazni procesi ionske izmenjave (~1 % vzorcev 
podzemne vode). V »stari« vodi v globokih vodonosnikih, ki se nahajajo v SV delu Slovenije se 
najverjetneje pojavljajo redukcijski pogoji (~2 % vzorcev podzemne vode). Kemijska sestava podzemne 
vode v nižinskih aluvialnih ravnicah v centralnem, V in SV delu Slovenije odraža kmetijske dejavnosti ter 
uporabo gnojil, saj so tla in podnebje ugodni za pridelavo kmetijskih pridelkov. Nadalje se v podzemni vodi 
prav tako odraža urbana raba prostora, ki je posledica dotrajanih in neustreznih kanalizacijskih sistemov 
ali greznic (~10 % vzorcev podzemne vode). Prav tako se urbani vpliv na podzemno vodo odraža v 
centralnem delu Slovenije, ki je hkrati najbolj poseljeno (glavno) mesto (~1 % vzorcev podzemne vode).  
 
Na osnovi merjenih vrednosti geokemijskih parametrov in vzrokov njihovega pojavljanja so bile določene 
tipične kemijske in izotopske vrednosti glede na prevladujočo litološko in litostratigrafsko enoto v zaledju 
analizirane podzemne vode. Določene so bile koncentracije naravnih ozadij za izbrane kemijske 
parametre, katerih izvor v podzemnih vodah je predvsem antropogen. Končen rezultat raziskave 
predstavljajo hidrokemijske tematske karte s podano prostorsko porazdelitev obravnavanih parametrov. 
 
Ključne besede: podzemna voda, Slovenija, kemijska in izotopska sestava, naravna kemijska ozadja.  
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1. INTRODUCTION 
 
1.1. The research problem  
 
Groundwater is a globally important, valuable and renewable resource. It originates from the infiltration of 
rain and snow. Rain contains small amounts of dissolved solids and gases, and is accumulated through 
the soil below the earth's surface in a porous layer. During infiltration through the soil it reacts with soil and 
forms a solution which affects the rock material, thereby increasing the concentrations of chemical 
constituents of water. Generally groundwater flows slowly through geological formations and remains in 
contact with minerals often isolated from the atmosphere (Jordana and Batista, 2004). The groundwater 
geochemical and isotopic composition varies widely as a function of the many complex natural and 
anthropogenic factors during its flow, either with depth or geographic distances. 
  
Prevailing natural factors influencing the groundwater chemical and isotopic composition are mainly 
lithological composition and climatic factors in the recharge area of sampled groundwater. Along with the 
lithological composition, also hydraulic type of the aquifer, thickness of saturated and unsaturated zone of 
the aquifer, groundwater flow and recharge rate play an important role. Further, recharge dynamics are 
also very important since it determine interaction time between groundwater and groundwater-bearing 
rocks, and also retention time of pollutant in the aquifer. Annual soil temperature and the amount of 
oxygen in the ground (aerobic/anaerobic conditions) are also very important, as well as other climatic 
conditions (temperature, and intensity and duration of precipitation), altitude, distribution and type of 
vegetation in the recharge area, thickness and soil type, and intensity of biological processes in soil. 
Finally, an important parameter is also partial pressure of CO2 which determines carbonate equilibrium in 
the groundwater and associated mineralization of groundwater. 
 
Groundwater quality and quantity are also affected by anthropogenic factors which can be assessed only 
if the natural background of the recharge area of the aquifer is known. These components could be 
evaluated as a difference between the total concentration of the chemical parameter (pollutant) and 
parameters natural background level. The most frequent anthropogenic sources influencing groundwater 
chemical composition are the agricultural land use (use of fertilizers and substances for plant protection) 
and urbanization. Discharges from sewerage systems can enter groundwater directly if the sewage pipes 
are old or broken, or if septic tanks are not properly maintained. Also municipal landfills, wastewater 
treatment, and industrial plants influence on groundwater chemical status (Appelo and Postma, 2005; 
Domenico and Schwartz, 1990; LAWA, 2001; Kunkel et al., 2004; Wendland et al., 2005; Kunkel et al., 
2007; Wendland et al., 2008).  
 
Groundwater chemical status significantly influences the use of groundwater as a source of drinking water, 
in food-processing industry, or in technological and recreational purposes. According to Morris et al. 
(2003) groundwater provides 25 to 40 % of the world's drinking water, 75 % in Europe (Sampat, 2000) and 
more than 97 % in Slovenia (Krajnc et al., 2007).  
 
The introduction of the European Union (EU) Water Framework Directive (WFD) (Directive 2000/60/EC) 
and its Daughter Groundwater Directive (2006/118/EC) on the protection of groundwater against pollution 
and deterioration of its chemical status has set out criteria (WFD, Article 17) for the assessment of the 
groundwater chemical status based on the existing European Community quality standards (nitrates, 
pesticides, and biocides) and on the requirement for Member States. The aim was to identify pollutants 
and threshold values (TVs) for groundwater bodies at risk in accordance with the analysis of pressures 
and impacts carried out under the WFD. In this context groundwater background levels (NBLs) are 
required as a reference to establish whether the groundwater is affected by contamination, and if, to what 
degree (Nieto et al., 2005).  
 
In Slovenia the hydrogeochemical map of Slovenian groundwaters is still not available, nor are the bases 
for determination of the reference state for the assessment of good chemical status of groundwater 
according to WFD (2000/60/EC) and it’s daughter directive (2006/118/EC) where both comprise the 
determination of NBLs as a basic information on the hydrochemical situation in aquifers. 
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1.2.  Purpose, goals and main research hypothesis 
 
Despite a large number of routine chemical and isotopic analyses on individual water sources in Slovenia, 
there has not yet been a comprehensive research on chemical or isotopic characteristics of groundwater, 
nor has any detailed interpretation of groundwater’s isotopic composition, based on its origin, ever been 
made. Additionally, Slovenia so far does not yet have a hydrogeochemical map of Slovenia, like e.g. 
Austria (Kralik, 2005) and Germany (Birke et al., 2009). The closest map ever made is a map of 
lithological and litogeochemical classification of aquifers in Slovenia (Bavec et al., 2008) which has been 
made according to the lithostratigraphic units of Geological map of Slovenia (1:250.000) (Buser, 2010).   
 
The purpose of this study is to present the spatial distribution of measured chemical parameters in 
groundwater, which sampling network contains 87 sampling locations and extended range of measured 
parameters. The working hypothesis is based on the presumption that by determining the recharge area 
of sampled groundwater, which includes the study of aquifer’s hydrogeological and hydrodynamic 
characteristics, available data on climate and vegetation cover in the recharge area, and groundwater 
chemical and isotopic data, it would be possible to quantify the prevailing factors which determine the 
groundwater chemical and isotopic parameters, which provide the information on groundwater recharge, 
dynamics, and groundwater age.  
 
Over the past three years (2009-2011) groundwater samples were taken from all the main geological 
formations with the focus on the representativeness of the groundwater sampling location natural 
recharge area. Groundwater samples have been analysed for major and minor ion concentrations, as well 
as trace element concentrations, and various groundwater isotopic composition. This dataset represents a 
unique collection of chemical and isotopic analysis by using the same laboratory techniques and 
procedures for individual parameters. The results therefore are directly comparable to each other and can 
be correlated to each other. The natural background levels (NBLs) of studied parameters were determined 
according to anthropogenic influence on the groundwater.  
 
The hypotheses are based on the assumption that origin of groundwater chemical (and isotopic) 
composition depend on the mineralogical composition of rocks that groundwater has passed through. If 
the residence time between groundwater and aquifer host rocks is long enough, groundwater develops so 
called compositional fingerprint of the local geology.  
 
The main hypotheses are: 
 
→ the main natural factors controlling Slovenian groundwater chemical and isotopic composition are 

lithological composition of the aquifer recharge area and recharge area climatic conditions,  
 
→ chemical composition of anthropogenically influenced  groundwater mostly depends on the land use in 

the groundwater recharge areas.   
 
The main goals of the study are: 

 
→ to determine the optimal methodology for geochemical research of Slovenian groundwater regarding 

the sampling network density, data processing, interpretation of results, and data presentation, 
 

→ to identify typical Slovenian groundwater chemical and isotopic composition in relation to lithological 
and lithostratigraphic units,  

 
→ to identify and quantify the main factors controlling different chemical and isotope parameters in 

Slovenian groundwater and to interpret the role of each factor,  
 
→ to develop the optimal methodology for evaluation of natural background levels (NBLs) in groundwater 

for selected chemical parameters according to specific Slovenian hydrogeological conditions, 
 
→ to prepare various hydrochemical thematic maps of the main hydrochemical and isotope parameters 

for the whole Slovenian territory. Thematic maps display typical concentrations of studied 
hydrochemical parameters for individual sampling locations and whole groundwater bodies. 
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1.2.1. Significance of research 
 
This research provides fundamental information about the relationship between the groundwater chemical 
composition and lithological composition of aquifer and its dynamics in the recharge area. Natural 
groundwater concentrations of the most important ions are evaluated which are not significantly or directly 
influenced by anthropogenic sources. By using the obtained data, it is possible to study the chemical 
interactions between groundwater and host rock, which appears to be the most important process that 
enables certain elements to enter the groundwater. Further on, data on stable isotopes composition of 
oxygen (δ18O) and hydrogen (δ2H) is used to identify the origin of infiltrated water, and radioactive isotope 
tritium (3H) complements the data about the age and dynamics of groundwater. With this information it is 
possible to create a more complete picture of hydrochemical characteristics of groundwater in aquifers of 
different lithological, climatological, vegetation and other conditions in Slovenia. 
 
 
1.2.2. Scientific contributions 
 
In the last decades, there has been a major progress in research of the relations between natural and 
anthropogenic factors on groundwater recharge areas and its hydrochemical parameters. However, there 
is still a deficiency, especially for individual chemical compounds, stable and radioactive isotopes 
composition and trace elements, which are less used in regular practice of hydrogeology. Previous studies 
gathered a large data-set of historical data and used statistical approaches on determining the natural 
background level within comparable groundwater typologies. This study covers systematic research on 
hydrochemical composition and identification of processes controlling the geochemical evolution of 
groundwater, covering heterogeneous regions in their recharge areas.  
 
Hydrochemical investigations worldwide regarding the discussed topic had their starting point in LAWA 
(2001) and BRIDGE (2005) methodology (Pauwels, 2007). The aim of this research was to assess the 
natural background levels based on the statistical analysis of basic chemical parameters and trace 
elements combined of past National groundwater monitoring network’s results. In comparison, this 
research includes present (recent) groundwater data and different basic methodological approaches for 
evaluating the natural background level and spatial distribution of observed parameters. This study also 
considers land cover/use data and data on climate.  
 
Further on, this research will also create an expert basis to complement the conceptual models of different 
groundwater bodies and aquifer systems, which were described by Prestor et al. (2003, 2006). Without 
reliable conceptual models, it is not possible to make hydraulic models that could predict the 
characteristics of the contaminant transport in groundwater. So far there are only conceptual models that 
often do not consider hydrochemical and isotopic characteristics of groundwater in Slovenia, which also 
contain virtually no measured data on the groundwater dynamics or their age. 
 
 
1.2.3. Applicative contributions 

 
From the application’s point of view, the final results of this research are hydrochemical thematic maps 
which have different purposes: planning of utilization of water resources for drinking water and 
technological purposes (water mineralization, Fe and Mn concentration that are limiting the use of drinking 
and technological water, aggressiveness and toxicity of groundwater) and planning water resources 
protection (data on groundwater flow, velocity, age, and other purposes in context of environmental 
protection) and for assessment of water vulnerability and sustainable management with groundwater. 
These hydrochemical thematic maps, which have not yet been done for Slovenia, are a summary of 
statistical methods that have been applied to geochemical data. These maps could help to efficiently 
manage groundwater sources in Slovenia, as part of Water Framework Directive (2000/60/EC) and 
Daughter Groundwater Directive (2006/118/EC) which both comprise the determination of natural 
background levels, and will give the researches basic information on the hydrochemical situation in 
aquifers. Additionally the information provided by those maps is very useful for general population as well, 
due to practical aspects; e.g. in households (groundwater hardness map or groundwater pollution with 
nitrates).  
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2. THEORETICAL BACKGROUND 
 
2.1. State of the art 
 
Many studies have been conducted in the past decades considerning the chemical and isotopic 
composition in Slovenian groundwaters, but none of these studies covers the complete Slovenian territory 
with broad range of observed parameters. In Slovenia the first general and systematic study of 
hydrogeological characteristics of Slovenian territory has been made by Drobne et al. (1976). Pirc et al. 
(1998) studied general distribution of stable isotopes of carbon and oxygen in surface waters in Slovenia. 
Kukar et al. (2003) used statistical approaches on macro- and trace-elements in Slovenian springs in 
order to establish the distribution of their properties. Physico-chemical parameters in groundwater were 
studied by Vončina et al. (2007), where on the results various chemometrics methods were employed. 
Brenčič and Vreča (2006a, 2006b) studied general chemical and isotopic composition of bottled waters in 
Slovenia, as well as d-excess (Brenčič et al., 2011). In Slovenian spring water also 3H activity was 
investigated (Korun et al., 2011; Vaupotič et al., 2011) as well as some other radioisotopes (Kobal et al., 
1990; EARS, 2002; Vaupotič et al., 2011; Korun and Kovačič, 2011; Benedik and Jeran, 2012). Stable 
isotope composition of dissolved inorganic carbon (δ13C-DIC) in groundwater were frequently used in 
studies of tracing DIC sources and dynamics in water (Vogel et al., 1975, Pezdič et al., 1990; Urbanc, 
1989, 1993; Pirc et al., 1998; Brenčič, 1998; Lojen et al., 2009; Cukrov et al., 2012; Doctor et al. 2008, 
Kanduč et al., 2013, Zavadlav et al., 2013). Groundwater δ13C-DIC in the recharge areas of silicate rocks 
was studied by Shin et al. (2011). Stable isotopic ratios of nitrogen in groundwater have been used to 
identify sources of nitrate by Zupanc et al. (2011), Urbanc and Jamnik (2007), Šturm and Lojen (2011), 
Šturm (2011), Pintar (1993, 2002), and Pintar et al. (1996, 2008). 
 
Since 1987, regular systematic national groundwater quality monitoring has been carried out by the 
Environmental Agency of the Republic of Slovenia (EARS) within the Ministry of the Environment and 
Spatial Planning (MESP). The monitoring was established on the alluvial aquifers, which are important for 
drinking water supply, and the groundwater quality monitoring for karstic springs followed in 1990 (Krajnc 
et al., 2007). Groundwater quality monitoring is carried out according to Regulation on the groundwater 
imission monitoring (2002, 42/02). The Slovene Environmental Protection Act (EPA, 1993) provides a 
legal basis for groundwater monitoring. Decree on groundwater quality standards (2005) defines the 
groundwater quality standards and methodology for chemical status assessment. Chemical status is 
additionally assessed by the monitoring results of drinking water abstracted from the groundwater 
resources. The results are assessed according to the Rules on drinking water (2004). In 2007, the 
national monitoring network included 206 monitoring sites. Although sampling network covered all 21 
groundwater bodies the density of sampling sites is higher on alluvial aquifers than on fissure and karst 
porosity aquifers (Krajnc et al., 2008). Two to four times a year about 160 different chemical and physical 
parameters are analysed (Krajnc et al., 2007). The main aim of these monitorings is a report of the current 
chemical status of groundwater and trends of physico-chemical parameters according to current 
meteorological conditions and past results, and the assessment for each individual groundwater body. No 
detailed interpretation is provided on the source of origin or transport of measured parameters. Additional 
groundwater quality monitoring programmes are performed on the local level by the water supply 
managements and local authorities (Krajnc et al., 2008). 
 
In the last decade the introduction of the European Union (EU) Water Framework Directive (WFD) 
(2000/60/EC) and its Daughter Groundwater Directive (2006/118/EC) on the protection of groundwater 
against pollution and deterioration of its chemical status has set out criteria (Article 17 of the Water 
Framework Directive) for the assessment of the chemical status of groundwater based on the existing 
European Community quality standards (nitrates, pesticides and biocides) and on the requirement for 
Member States to identify pollutants and threshold values (TVs) for groundwater bodies at risk in 
accordance with the analysis of pressures and impacts carried out under the WFD. In this context 
groundwater background values (NBLs) are required as a reference to establish whether the groundwater 
is affected by contamination, and if, to what degree (Nieto et al., 2005).  
 
The actual value of natural groundwater background can be difficult to establish, because the 
concentrations of dissolved substances vary with time and space. Additionally, finding an environment in 
densely populated Europe that has not been affected by the anthropogenic influences is quite difficult. 
Therefore geochemical studies were performed to establish the natural background chemistry of 



Mezga, K.: Natural hydrochemical background and dynamics of groundwater in Slovenia. 
Ph.D. Thesis. University of Nova Gorica, 2014. 
____________________________________________________________________________________ 

5 
 

groundwater. Two bigger projects were focused on the defining and determining the natural background 
value: cross border and EU-wide projects BaSeLiNe – Natural Baseline Quality in European Aquifers: a 
basis for aquifer managament Ref EVK-CT-1999-00006 (Edmunds and Shand, 2008), and later BRIDGE 
– Background cRiteria for the IDentification of Groundwater NBLs and TVs values (2005-2007) (Pauwels 
et al., 2007). The criteria used in the BRIDGE project are the most relevant ones to explain the natural 
chemical signature of the aquifer (Quevauviller et al., 2009). Detailed description of the methodology of 
the project is found in BRIDGE (2005). The applicability and validity of this approach is checked in 14 
case studies at the level of aquifer typologies throughout Europe including Upper Rhine Valley as a 
transboundary case study (Wendland et al., 2008), groundwater from Rhodope area (Thrace, Greece) 
(Gemitzi, 2011), groundwater from Campania region (southern Italy) (Ducci and Sellerino, 2012), and 
Western River Rhine (The Netherlands) (Griffioen et al., 2008). 
 
Prior to the BRIDGE, a Germany’s Working Group of the Federal States on Water Problems (LAWA) 
(2002-2004) developed the procedure to define good chemical status (natural groundwater conditions) on 
existing data from regular groundwater monitoring network provided by the Federal States (LAWA, 2001). 
For the distribution pattern of a specific groundwater parameter, observed by a number of groundwater 
monitoring stations within comparable groundwater typologies (petrographical and hydrodynamical), two 
statistical distribution functions were used – the natural and the anthropogenic component. In order to 
separate those two influencing factors a statistical analysis of a large number of groundwater samples was 
considered, with condition that groundwater samples were taken from aquifers, which can be regarded as 
almost hydrochemically homogenous. Methodology is based on the statistical analysis with observation of 
the frequency distribution of the observed concentration of groundwater parameter. The lognormal 
distribution is expected of concentrations resulting from the redox reactions in the soil or the groundwater 
bearing rocks (natural component), whereas the concentration patterns originating from direct inputs from 
the soil are expected to be normal (anthropogenic component). The explicit shape of both distribution 
functions is determined by 3 parameters (amplitude, median and variance), which have to be fitted to the 
observed frequency distribution using standard algorithms. Natural groundwater concentrations are 
characterised by a concentration range defined by the confidence intervals (10 % and 90 % percentiles) of 
the concentration distribution of the natural component (Wendland et al., 2005). Based on monitoring data 
from 7,920 groundwater monitoring stations, 15 different hydrochemical parameters were evaluated for 
each groundwater typology, and the range of natural groundwater concentrations has been identified. The 
applicability of the approach was established for 4 hydrochemically different groundwater typologies 
occurring through Germany (Wendland et al., 2003; Voigt et al., 2005). They use 2 statistical methods, the 
separation method, and the selection (ranking) method. Results of both methodologies are slightly 
different, but NBLs are comparable. NBLs from both projects have been used as a starting point to derive 
pollutant TVs values for the groundwater bodies. 
 
As stated above, groundwater quality in aqifers is influenced by natural and anthropogenic sources among 
which is sometimes difficult to distinguish whether an observed groundwater parameters is influenced by 
pollution or is still natural (Wendland, 2008). Therefore various methods for assessing the natural 
background chemistry of groundwater were proceed, e.g. assessment of historical groundwater quality 
data, comparison of up-gradient and cross-gradient groundwater quality, comparison with similar 
geochemical environments, geochemical modelling, and statistical methods. They all have advantages 
and limitations (Shand et al., 2007). 
 
 
2.2. Isotopes in the global water cycle 

 
2.2.1. Radioactive isotopes 
 
Radioactive isotopes occurring in groundwater originate from cosmogenic nuclear reactions, and 
additionally from atmospheric nuclear testing. In groundwater studies they are used for determination of 
groundwater residence time (age) for estimating aquifer storage, as well as the rate of groundwater 
renewal and flow velocity (3H, 14C, 81Kr, 36Cl, uranium isotopes and 4He).  
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2.2.1.1. Radioactive isotope of hydrogen (tritium) (3H) 
 
Tritium (3H or T) is a short-lived radioisotope of hydrogen with a half-life of 12.43±0.02 years (Clark and 
Fritz, 1997; Kendall and McDonnell, 1998; Ravikumar and Somashekar, 2011). Tritium activity is 
expressed as absolute concentrations using tritium units (TU) (Clark and Fritz, 1997) which equals to the 
activity of 0.118 Bq/kg of water (Kazemi et al., 2006). Small amount of tritium is produced naturally in the 
stratosphere by cosmic radiation on 14N (14N + n → 15N → 3H + 12C), or are of anthropogenic formation 
after atmospheric nuclear weapons tests throughout the 20th century (Clark and Fritz, 1997) which 
disturbed the natural levels of tritium. The natural concentration of tritium prior the nuclear bomb testing 
ranged from approx. 2 to 8 TU (Motzer, 2005), and at the peak in 1963 was about 5,000 TU in 
precipitation in the N hemisphere (Gat et al., 2001). After cessation of nuclear tests the tritium 
concentrations dropped to between 12 and 15 TU (Motzer, 2005) and is still decreasing (Motzer, 2005; 
Gat et al., 2001).  
 
Tritium is mostly distributed in the environment as water so its concentration in precipitation is reflected in 
groundwater, and can therefore be used to date groundwater recharge. Since tritium activity varies 
spatially and temporally, to estimate groundwater recharge and a travel time, it is important to use, as a 
reference, the closest precipitation measurement site. Groundwater age estimation using tritium only 
provides semi-quantitative values (Motzer, 2005):   
 
- < 0.8 TU indicates older water (prior to 1950’s)  
- 0.8 to 4 TU indicates a mixture between older and recent water  
- 5 to 15 TU indicates recent water (< 5 to 10 years)  
- 15 to 30 TU indicates some bomb tritium  
- > 30 TU indicates the recharge in the 1960’s to 1970’s. 
 
Tritium data provide an estimation of groundwater age, or time since groundwater was recharged (Clark 
and Fritz, 1997). But tritium data alone cannot provide the age of groundwater (U.S. Geological Survey, 
1999). Namely groundwater dating is more complex and requires long time series data at particular 
sampling location, requires measurements of vertical tritium activity in object, as well as estimation of the 
initial tritium activity prior to recharge.  
 
In the precipitation (atmosphere) long term tritium records show that tritium activity is continually 
decreasing after 1963 (Fig. 1), therefore any references used for the interpretation of groundwater tritium 
activity needs to consider the closest precipitation measurement location and a year of reference (Kazemi 
et al., 2006). Therefore the presented groundwater age estimation guide values have changed during the 
last few years.     
 
Groundwater age and residence time can be estimated on the basis of groundwater tritium activities 
modelled by the groundwater exponential model (Maloszewski and Zuber, 1982, 1996; Zuber et al., 2001).  
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Figure 1: Monthly variation of 3H activity (A) in precipitation in Ljubljana (1981-2006) (Vreča et al., 
2008) 
 
 
2.2.2. Stable isotopes 
 
Stable isotopes can be used to investigate groundwater recharge (altitude and climatic conditions), 
groundwater dynamics, contamination, interaction (mixing) with other waters, and can help to identify the 
source of pollution, as well as other processes in the aquifer. Stable isotope analyses are generally 
reported as isotopic ratios of the particular element being analysed. By established convention, isotopic 
ratios are reported as delta (δ) in per mill (‰):  
 
δ(sample) (‰) = [(R(sample)/R(standard)) - 1] x 1000,                  (1) 
 
where R represents the isotopic ratio (heavier to lighter isotope, e.g. 18O/16O, 2H/1H, 13C/12C, 15N/14N) of 
the sample and standard, respectively. A commonly used standard for 18O/16O and 2H/1H is Vienna 
Standard Mean Ocean Water (V-SMOW), for 13C/12C is Vienna Pee Dee Belemnite (VPDB), and for 
15N/14N is the atmospheric air (Air).  
 
Isotope fractionation is a process affecting the relative abundance of stable isotopes of the same element. 
Detail describtions of isotope fractionation is found in Zeebe and Wolf-Gladrow (2001), Clark and Fritz 
(1997), Hoefs (1997) and other textbooks on environmental isotopes.  
 
An interpretation of meteoric water lines can help to determine the source of air masses, together with the 
deuterium excess (d-excess) which is calculated on the basis of the relationship (Craig, 1691; Dansgaard, 
1964): 
 
d-excess = δ2H – 8δ18O.                      (2) 
 
The d-excess is believed to be related mainly to the meteorological conditions in the source region from 
which the sample is derived, i.e. the relative humidity in the atmosphere above the ocean, the wind 
regime, surface roughness of the ocean, as well as its temperature (Merlivat and Jouzel, 1979). In 
addition, d-excess reflects the prevailing conditions during the evolution and interaction of air masses 
mixing en route to the precipitation site (Fröhlich et al., 2002). It is measured from the relative proportions 
of δ18O and δ2H contained in water and can be depicted visually as an index of deviation from the GMWL. 
Vapour generated over a closed basin with restricted communication such as the Mediterranean Sea is 
characterised by a higher d-excess value (~20‰) (Gat and Carmi, 1970; Gat and Dansgaard, 1972; 
Różański et al., 1993), compared to Atlantic air masses with a lower d-excess value (~10‰) (Fröhlich et 
al., 2002; Gat and Dansgaard, 1972; Różański et al., 1993).  
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2.2.2.1. Stable isotope composition of oxygen and hydrogen (δ18O and δ2H) in 
groundwater 

 
Stable isotopes, as a result of their conservative behaviour in water and the large variability of their 
isotope ratios, are powerful tools for studying the global water cycle. The stable isotopes of oxygen and 
hydrogen (18O and D) in water are applied for tracing water in its various stages of migration (Mook, 2006) 
and are used for identifying recharge areas (source and movement) of groundwater (Clark and Fritz, 
1997) which reflects the stable isotope ratio of precipitation. Variations of δ18O and δ2H in atmospheric 
water vapour, which starts from isotope fractionation during evaporation from the ocean and condensates 
during the formation of rainfall, occur almost exclusively in the atmospheric and the Earth’s surface part of 
the water cycle. During those phase changes, i.e. evaporation and condensation of water, the heavy water 
molecules (H2

18O, 1H2H16O) remain preferentially in, or pass into, the liquid (solid) phase. During infiltration 
of precipitation below the unsaturated zone, the isotopic composition remains practically unchanged 
during subsurface movement and storage, except at higher temperatures (>60°C), where isotopic 
exchange of oxygen with the rock matrix can occur (Araguas-Araguas et al., 2000; Gat et al., 2010). 
 
Hydrogen isotopes are fractionated proportionally to oxygen isotopes (Clark and Fritz, 1997), where the 
linear relation between δ18O and δ2H on the global scale is expressed as the global meteoric water line 
(GMWL) (Fig. 2), defined by Craig (1961) as: 
 
 δ2H=8δ18O+10 (‰)                                            (3) 
 

 
 

Figure 2: Global meteoric water line: relation between δ18O and δ2H of water vapour (source of 
precipitation) and resulting precipitation (IAEA, 2011) 
 
Różański et al. (1993) and Gourcy et al. (2005) reported a refined empirical regression line for the long-
term (1961–2000) annual weighted means of δ18O and δ2H values, collected in the Global Network of 
Isotopes in Precipitation (GNIP), as δ2H=(8.07±0.02)δ18O+(9.9±0.01).  
 
Dansgaard (1964) also observed the geographic distribution in the isotopic composition of precipitation in 
relation to many environmental parameters, e.g. latitude (latitude effect), altitude (altitude effect) (Figs. 3 
and 4), distance from coast (continental effect), the amount of precipitation (amount effect) and surface air 
temperature (temperature effect). The altitude effect is caused by increasing elevation in mountain regions 
as a result of the continuous pseudo-adiabatical cooling of the air mass to below the dew point in an 
orographic precipitation system where heavier isotopes precipitate preferentially (Clark and Fritz, 1997; 
Dansgaard, 1964; Jouzel and Merlivat, 1984; Gat, 1996; Ingraham, 1998). Hydrological applications of 
isotopic measurements derive usually from the knowledge of the altitude effect, which is one of numerous 
applications of environmental isotope techniques in hydrology often used to calculate the mean altitude of 
the recharge area of aquifers (Longinelli and Selmo, 2003). The altitude effect is temperature-related, and 
values of 18O mentioned in the literature vary between –0.1 and –0.6 ‰ δ18O/100 m (Clark and Fritz, 
1997; Eriksson, 1983).  
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Figure 3: Relation between weighted mean 
δ18O and the altitude of the sampling 
precipitation stations (Vreča et al., 2006a) 

Figure 4: Altitude effect based on mean δ18O 
in small aquifers in west Slovenia (In Pezdič, 
1999) 

 
The continental effect is present when sea water evaporates from the sea to the atmosphere (Fig. 5), and 
the vapour masses move inland. Isotopic fractionation occurs in moving air masses, resulting in the 
depletion of heavy isotopes (Ingraham, 1998). Coastal precipitation is isotopically enriched (Fig. 6) relative 
to colder, inner continental regions, which receive isotopically depleted precipitation with strong seasonal 
differences (Clark and Fritz, 1997; Ingraham, 1998). For example, in Irish precipitation over Europe, from 
the Irish coast to the Ural mountains, an average depletion of 7 ‰ in δ18O is observed (Mook, 2006).  
 

Figure 5: Altitude effect (Hoefs, 1997) Figure 6: Distribution of δ18O in stream 
waters in Slovenia (Pirc et al., 1998) 
 

Depending on the region, differences in the amount of precipitation, temperature variations, distinct air 
mass sources, evaporation and fractionation processes occurring below the cloud base are characteristic 
at a local scale, which cause the relationship between stable isotopes of water δ18O and δ2H to vary from 
that of the GMWL also known as local meteoric water line (LMWL) (Hoefs, 1997). Vreča et al. (2010) 
calculated LMWLs for precipitation at 3 precipitation locations: Ljubljana, Portorož Airport, and Kozina 
(Tab. 1).  
 
Table 1:  Slovenian local meteoric water lines (Vreča et al., 2010) 
Local meteoric water line Time period 
Ljubljana: δ2H=(8.1±0.1)δ18O+(9.8±0.7)  1981–2006 
Portorož Airport: δ2H=(8.05±0.22)δ18O+(9.35±1.55)  2000–2006 
Kozina: δ2H=(7.7±0.3)δ18O+(9.6±0.7)  2001–2003 
 
The nearest LMWLs to Slovenia found in the literature are: Zagreb (Croatia) with δ2H=7.8δ18O+5.7 (Vreča 
et al., 2006a); Northern Italy with δ2H=7.74δ18O+9.4; Central Italy with δ2H=7.0δ18O+5.6; Southern Italy 
with δ2H=6.94δ18O+7.31 (Longinelli and Selmo, 2003); and the eastern Mediterranean meteoric water line 
(EMMWL) with δ2H=8δ18O+22 (Gat and Carmi, 1970).  
 
In Slovenia, the precipitation station at Ljubljana and occasionally a few other stations are included in the 
GNIP, organised jointly by the Isotope Hydrology Section of the International Atomic Energy Agency 
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(IAEA) and the World Meteorological Organization (WHO) (Gourcy et al., 2005). The precipitation quantity 
monitoring programme is performed in the framework of the regular activities of the Slovenian 
Environmental Agency, but monitoring of the isotopic composition is not included in the regular monitoring. 
It has been performed by the Jožef Stefan Institute in Ljubljana at the Ljubljana meteorological station 
(since 1981), Portorož Airport (since 2000) and Kozina (2000–2003).  
 
Stable isotope composition in precipitation in Slovenia was already the topic of many researchers like 
Krajcar-Bronić et al., (2003, 2006), Vreča et al., (2005, 2006ab, 2007, 2010,), Ogrinc et al. (2008), and 
others. The stable isotopic composition of oxygen and hydrogen has been implemented in groundwater 
studies as well by Pezdič (1997), Trček  (2006), Doctor et al. (2000, 2006), Brenčič and Vreča (2006ab), 
Brenčič and Poltnig (2008), Ogrinc et al. (2008), Kanduč et al. (2012, 2013), Urbanc et al. (2012), Urbanc 
and Jamnik (1999), Mali and Urbanc (2006 and 2009) and others. Calculation of altitude and continental 
effects for Slovenia with mean values of δ18O in surface water in Slovenia was conducted by Pirc et al. 
(1998). 
 
 
2.2.2.2. Stable isotope composition of dissolved inorganic carbon (δ13C-DIC) in 

groundwater 
 
Rainwater equilibrates with atmospheric CO2 which solubility is temperature dependent (Lower, 2010; 
Appelo and Postma, 2005). As rainwater seeps through the soil layer (Fig. 7) it equilibrates with soil CO2, 
which is produced from dead plants and animal decay or root respiration, and increases the content of 
H2CO3 (Rastogi et al., 2002). The weak acid (H2CO3) then dissolves limestone and dolomite allowing the 
water to pick up calcium, magnesium, and carbonate ions (Hem, 1963; Lower, 2010; Appelo and Postma, 
2005; Faimon et al., 2012).  
 
CO2(g) →CO2(aq)                                                                                                        (4) 
 

CO2(aq) + H2O → H2CO3                                                                                     (5) 
 

H2CO3 → H+ + HCO3
-                                                                                         (6) 

 

HCO3
- → H+ + CO3

2-                                                                                          (7) 
 

CaCO3 → Ca2+ + CO3
2-                                                                           (8) 

 
The total dissolved inorganic carbon (DIC) is generally a sum of H2CO3, CO2(aq), HCO3

-, and CO3
2- (Stumm 

and Morgan, 1996; Drever, 1997; Clark and Fritz, 1997; Kendall and Doctor, 2003; Redondo and 
Yélamos, 2005). DIC is produced by various reactions: (1) weathering of carbonate minerals by acidic rain 
originated by reaction between precipitation water and soil CO2 (H2CO3), or other strong acids (H2SO4, 
HNO3); (2) weathering of silicate minerals by H2CO3 produced by the dissolution of biogenic soil CO2 by 
infiltrating rain water; and (3) weathering of carbonate minerals by H2CO3 (Kendall and Doctor, 2003).  
 
δ13C-DIC is a non-conservative tracer and depends on various sources of origin, where each of these 
sources contributes to the DIC of groundwater in diverse δ13C ratios (Stumm and Morgan, 1996; Hoefs, 
1997; Kendall and McDonnell, 1998). In general δ13C-DIC is used to identify sources of carbon where it is 
particularly valuable for distinguishing between carbon derived from organic matter, transport of CO2 gas 
from a soil atmosphere, and carbon derived from carbonate weathering (Clark and Fritz, 1997; Drever, 
1997; Hoefs, 1997; Kendall and McDonnell, 1998).  
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(Clark and Fritz, 1997; Deines et al., 1974). In the open system, there is a constant inflow of CO2 where 
gas and aqueous phases coexist in the unsaturated zone, and the calcite dissolution proceeds with a 
constant supply of soil CO2. Due to continuous replenishment of CO2, more calcite is dissolved, and the 
final equilibrium concentration of DIC will be high (Deines et al., 1974; Clark and Fritz, 1997; Kendall and 
Doctor, 2003). Open system equilibration of DIC with CO2 enriches DIC in 13C by about 9 ‰ (Mook et al., 
1974). In the closed system the soil CO2 is not replenished as carbonate dissolution proceeds and the 
amount of final DIC concentration is low. Dissolution of carbonate minerals provides an additional source 
of carbon to DIC which evolves to more enriched groundwater δ13C-DIC values (Clark and Fritz, 1997). 
 
Weathering of silicate minerals has a different effect on the carbonate system. In this case the main 
source of DIC is derived from the soil CO2 (Clark and Fritz, 1997; Shin et al., 2011) consumed by the 
alteration of feldspars (albite, anortite, kaolinite) (Clark and Fritz, 1997). Chemical reactions in the aquifer 
produce a non-significant shift in DIC isotope composition (Redondo and Yélamos, 2005). 
 
The worldwide δ13C-DIC in catchment waters is generally in the range of -25 ‰ to -5 ‰ (Clark and Fritz, 
1997; Kendall and Doctor, 2003; Mills, 1988; Kendall et al., 1995).  
 
 
2.2.2.3. Stable isotope composition of nitrogen (δ15N) in groundwater 
 
Nitrogen isotopes (δ15N) are widely used to identify the nitrogen sources, processes and migration of 
contaminant in the aquifer. The isotopic fingerprints of nitrogen are derived from the atmosphere, 
fertilizers, soils, or manure (Kendall and McDonnell, 1998).  
 
The dominant source of nitrogen is the atmosphere (δ15NAir=0 ‰) which is fixed by many plants and 
transported to soil. The δ15N range in soil (-10 to +15 ‰) depends on whether they are cultivated, on the 
soil depth, vegetation, climate, and more. Most soils have δ15N range of +2 to +5 ‰. Plants by fixing N2 
from the atmosphere have δ15N between 0 to +2 ‰ which is close to δ15N of atmospheric N2. Artificial 
(inorganic) fertilizers produced by the fixation of atmospheric N2 include the urea, ammonium nitrate and 
potassium nitrate, and are generally reflecting their atmospheric source (-4 to +4 ‰). Animal waste 
products are enriched in 15N because of volatilisation of 15N-depleted ammonia, and oxidation of residual 
waste material (+10 to +25 ‰) (Kendall and McDonnell, 1998). In Slovenia organic fertilizers have δ15N 
values around 9.5±3.9 ‰ (mean 8 ‰) and synthetic fertilizers around 3.0±3.3 ‰ (mean 0.4 ‰) (Šturm 
and Lojen, 2011). Rocks contributions are almost always negligible (Kendall and McDonnell, 1998).  
 
The δ15N values can be significantly altered by fractionation processes such as volatilisation, nitrification, 
and denitrification. During denitrification the lighter isotope 14N is preferentially utilized, leaving a larger 
fraction of the heavier isotope 15N in the unreacted NO3

-. In anoxic groundwater, denitrification results in 
an increase in δ15N of dissolved nitrate and decreasing the total concentration of NO3

- (Kendall and 
McDonnell, 1998). 
 
 
2.3. Groundwater geochemical processes and groundwater chemistry 
 
2.3.1. Physico-chemical parameters 
 
2.3.1.1. Hydrogen ion activity (pH) 
 
pH is the term used to express the intensity of the acidity of a solution and measurement of hydrogen ion 
(H+) activity in a water sample, or acid-base equilibrium, respectively (Rail, 2000). At the typical 
groundwater temperature the pH less than 7 is considered as acidic, and with a pH greater than 7 as 
alkaline (Freeze and Cherry, 1979). The common range of pH in natural waters is between 5 and 8.5 
(Hem, 1985). Groundwater pH depends on the type of rocks through which it passes; carbonate rocks 
neutralise acidic water and give them alkaline pH, whereas igneous rocks have a limited effect on the pH 
(Bradshaw, 1975). Natural rainwater is slightly acidic (Krauskopf and Bird, 1994) due to reaction with the 
atmospheric CO2, forming H2CO3. 
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For drinking water purposes the water should not be aggressive, and the pH range is between 6.5 and 9.5 
(Rules on drinking water, 2004).  
 
 
2.3.1.2. Electrical conductivity (EC) 
 
The EC in groundwater is temperature dependent (Moore et al., 2008) and estimates the concentration of 
all dissolved constituents in water (Hem, 1970) which influence on the ability of that water to conduct an 
electrical current measured in µS/cm. Rainwater has low electrical conductivity, generally of several tens 
of µS/cm, and brines in deep sedimentary basins contain hundreds of thousands µS/cm (Freeze and 
Cherry, 1979). EC between 50 and 750 µS/cm indicates good water quality (Saulnier et al., 2011). 
Additionally the EC can be also used as an indicator for anthropogenic pollution (Birke et al., 2009). This 
parameter is a good estimator of total dissolved solids (TDS) and for that matter the mineral salt content of 
the groundwater (Hem, 1970; Freeze and Cherry, 1979). 
 
The allowed maximum permitted level for drinking water purposes is 2500 µS/cm (20°C) in water (Rules 
on drinking water, 2004).  
 
 
2.3.2. Major and secondary major ions chemistry  
 
Major cations and major anions in groundwater are detected in concentrations generally ranging from 1 to 
1,000 mg/L (Hounslow, 1995). The major cations include Ca2+, Mg2+, Na+, K+, Si, and the major anions 
HCO3

-, Cl-, NO3
-, S and SO4

2-. Secondary constituents in groundwater are detected in concentrations 
ranging generally from 0.01 to 10 mg/L (Hounslow, 1995). Those are B, Ba, Fe, NH4

+, PO4
2-, Sr, and Zn.  

 
Groundwater chemical composition provides the information on the share of individual chemical 
parameter. This data is used to identify the sources and relations between the groundwater and the 
lithological composition of the aquifer (Hounslow, 1995). The geochemical processes in the aquifer which 
are responsible for the evolution of the chemical character of the groundwater are also being explained by 
the use of various chemical ratios, e.g. Ca2+/Mg2+ molar ratio.  
 
Groundwater chemistry is a subject of kinetics reaction rate which affects groundwater (dis)equilibrium 
and should be considered when modelling groundwater reaction processes. For example, in carbonate 
aquifers the soluble carbonate minerals react fast upon contact with water and equilibrium is attained very 
quickly compared to residence time of groundwater. Contrary slowly soluble silicate minerals react very 
sluggishly so that equilibrium at low temperatures is never attained and reaction kinetics needs to be 
considered (Appelo and Postma, 2005).  
 
 
2.3.2.1. General calcium (Ca2+) geochemistry 
 
Calcium generally has a high mobility and can easily become a major ion of water (Jordana and Batista, 
2004). Its natural source is found in rock minerals like calcite and aragonite (CaCO3), dolomite 
CaMg(CO3)2, gypsum (CaSO4*2H2O), anhydrite (CaSO4), fluorite (CaF2), apatite, plagioclase (anortite), 
pyroxenes, amphiboles, feldspar and clay minerals (e.g. illite, chlorite, and Ca-montmorillonite) (Hounslow, 
1995; Hem, 1985; Zupančič and Pirc, 1999). Less important calcium sources are of anthropogenic origin 
which include construction materials (e.g. cement, brick lime (Ca(OH)2), and concrete), batteries, 
application in plasters (CaSO4  x ½ H2O), fertilizers (CaCl2 or Ca(NO3)2), and lime (CaCO3) (Cardarelli, 
2000; LennTech, 2013a; De Vos et al., 2006). In natural waters and particularly groundwater the Ca2+ 
concentrations up to 100 mg/L (Hounslow, 1995; Hem, 1985) or higher (National Research Council, 1977) 
are very common. Groundwater Ca2+ concentration can be also influenced by cation-exchange reaction 
with clayey and ferric aquifer minerals where natural softening can occur, where calcium ion is replaced 
with sodium ion (Hounslow, 1995; Selinus et al. 2005). 
 
There is no maximum permitted level for drinking water purposes for Ca2+ according to Rules on drinking 
water (2004). 
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2.3.2.2. General magnesium (Mg2+) geochemistry 
 
The major natural sources of magnesium are found in the carbonate rocks (dolomite and magnesite), 
ferromagnesian minerals (e.g. amphiboles, olivine, pyroxenes) and clay minerals (micas) which are found 
mostly in igneous rocks. In groundwater increased Mg2+ concentrations are possible due to interactions 
with seawater (mixing, intrusion) (Hounslow, 1995; Hem, 1985). Magnesium in the form of insoluble 
silicates breaks down into more soluble carbonates, clay minerals (cation exchange) and silica, depending 
on the presence of H2CO3 in the water (Karanth, 1987). The magnesium release rate from clays (e.g. 
chlorite, vermiculite, and montmorillonite) is generally slow (Mikkelsen, 2010). As anthropogenic source it 
can be found in plant nutrient, in fire protection devices, in fertilizers, cattle feed, in beer breweries 
(MgSO4), in wastewater treatment plants (Mg(OH)2), medicines, and as magnesium alloys in cars and 
other (LennTech, 2013b). Fertilization with other cations (e.g. K+ and Ca2+) frequently leads to enhanced 
magnesium solubility in the soil as they exchange on the clay sites and make magnesium more 
susceptible to leaching (Mikkelsen, 2010). In natural waters magnesium concentration is usually found 
from negligible to about 50 mg/l (Hounslow, 1995; Hem, 1985) and rarely above 100 mg/l, so calcium-
based hardness usually predominates (National Research Council, 1977). 
 
There is no maximum permitted level for drinking water purposes for Mg2+ according to Rules on drinking 
water (2004). 
 
 
2.3.2.3. General calcium and magnesium (Ca2+/Mg2+) molar ratio geochemistry 
 
Molar ratio between calcium and magnesium in groundwater indicates the relative proportion of the 
lithological composition of sampling location recharge area, and is equal to 1 if dissolution of dolomite 
prevails, whereas higher ratio indicates a greater contribution of calcite minerals dissolution (Mayo and 
Loucks, 1995). Higher Ca2+/Mg2+ molar ratio (>2) indicates greater share of calcite according to dolomite, 
and is indicative also for the dissolution of silicate minerals, which contribute Ca2+/Mg2+ ions to 
groundwater (Katz et al., 1998). Based on the Ca2+/Mg2+ molar ratio in groundwater it is possible to 
estimate the prevailing origin of rocks (limestone or dolomite) in the recharge area of sampled 
groundwater.  
 
 
2.3.2.4. General bicarbonate (HCO3

-) geochemistry 
 
Carbonate-rich sedimentary rocks are by far the most common geogenic source of alkalinity in waters 
whereas igneous rocks present relatively insignificant sources of carbonate (Todd and Mays, 2005). The 
carbon in water arises from the reaction of CO2 dissolved in soil water and groundwater with carbonate 
(calcite and dolomite) and silicate minerals (Ca-silicates, Mg-silicates, Na-silicates, K-silicates). During 
reaction of carbonate weathering (Equations 4-9) half of HCO3

- is derived from soil CO2. During the silicate 
weathering: 
 
2CO2 + 11H2O + 2NaAlSi3O8 → 2Ba+ + 2HCO3

- + Al2Si2O5(OH)4 + 4H4SiO4,             (10) 

 
all HCO3

- is derived from soil CO2 due to lack of carbonate minerals in the rocks (Berner and Berner, 
2012). Anthropogenic sources of alkalinity include agricultural practices (lime application) on the fields, the 
effluent from wastewater treatment plants, wastewater from industry, and domestic uses in the cleaning 
agents and food residues (De Vos et al., 2006). Usually less than 500 mg/L is found in the natural waters 
(Todd and Mays, 2005). 
 
Three carbonate species (H2CO3, HCO3

-, and CO3
2-) contribute to total alkalinity and are pH and 

temperature depended (Fig. 9. At a pH of 6.3, the activities of HCO3
- and H2CO3 are nearly equal. With pH 

> 6.3, HCO3
- is the predominant species and at pH < 6.3 there is more H2CO3

*. The same relation for the 
CO3

2- / HCO3
- couple shows that the two species have equal activity at pH = 10.3. At a pH > 10.3, CO3

2- 

becomes the predominant species while HCO3
- is more abundant at pH < 10.3 (Appelo and Postma, 

2005). 
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Figure 9: Percentage of HCO3

- of total dissolved carbonate as function of pH (Appelo and Postma, 
2005) 
 
Alkalinity is a sum total of components in water that tend to elevate its pH above a value of 4.5 (McKee 
and Wolf, 1972). Alkalinity is the true measure of acid-neutralizing capacity which includes the bicarbonate 
(HCO3

-), carbonate (CO3
-) and hydroxide (OH-) ions (Radtke et al., 1998). 

 
Formula for alkalinity in carbonate systems is (Stumm and Morgan, 1996): 
 
[Alk] = [HCO3

-] + 2[CO3
2-] + [OH-] - [H+],                              (11) 

 
and formula for alkalinity in systems other than aqueous carbonate is (Stumm and Morgan, 1996):  
 
[Alk] = [HCO3

-] + 2[CO3
2-] + [NH3] + [HS-] + 2[S2-] + [H3SiO4

-] + 2[H2SiO4
2-] + [B(OH)4

-] + [Org-] + [HPO4
2-] + 

2[PO4
3-] - [H3PO4] + [OH-] - [H+].                              (12) 

 
 
2.3.2.5. Practical aspects of groundwater mineralization (CaCO3) 
 
Water hardness is caused mainly by the divalent ions of Ca2+ and Mg2+ which source is found mostly in 
carbonate rocks (limestone and dolomite) and other calcium-bearing minerals in soil and rock formations. 
The classification of waters regarding their hardness is arbitrary, with a number of classifications used: as 
concentration of CaCO3 (mg/L or ppm, or mmol/L), as German degrees hardness (°dH), or as French 
degrees (°F) (Selinus et al., 2005; Gray, 2008). Until recently, in Slovenia the German water hardness 
scale was used, but in order to make the scale of water hardness internationally comparable, in 2007 a 
new scale was introduced (Tab. 2) where molar concentration of CaCO3 (mmol/L) is used as a unit for 
classification (WRMG, 2007). Since Ca2+ concentrations usually exceed the Mg2+ concentrations in water 
the calcium-based water hardness usually predominates (National Research Council, 1977). Hard waters 
are associated with the thick soil layer and limestone in the recharge areas, whereas soft waters occurs in 
the recharge areas of poorly permeable rocks in the recharge area (e.g. granite) (Gray, 2008), where the 
soil is sandy and/or thin, and where limestone formations are sparse or absent (Gray, 2008; Ritter, 2010). 
 
Table 2: A new 3-point water hardness scale CaCO3 (mmol/L) and its corresponding values in 
German degrees (°dH) 
Water hardness CaCO3 (mmol/L) German hardness (°dH) 
soft  < 1.5 < 8.4 
medium hard  1.5 – 2.5 8.4 - 14 
hard  > 2.5 >14 
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Groundwater (total) hardness is calculated as (Freeze and Cherry, 1979): 
 
CaCO3=2.5(Ca2+)+4.1(Mg2+)                                                       (13) 
 
was calculated following the formulas below: 
 
MCaCO3/MCa=100.1/40.1=2.5                                                      (14) 
 
MCaCO3/MMg=100.1/24.3=4.1.                                                        (15) 
 
Calculated CaCO3 concentration was converted to mmol/L (divided by CaCO3 molar mass) and °dH 
(divided by 17.8 mg/L). 
 
Hard water can cause water pipes, kettles, boilers and washing machines to scale up, whereas soft water 
is more aggressive (corrosive) and increases the solubility of heavy metals such as Cu, Zn, Pb and Cd in 
water (Gray, 2008). Groundwater hardness varies locally depending on chemical and mining industry 
effluents, or excessive application of lime to the soil in agricultural areas (British Columbia of Canada, 
2007; Gray, 2008).  
 
 
2.3.2.6. Soil CO2 partial pressure (PCO2) 
 
The volume percent of CO2 in the dry air is 0.03 % (Lower, 2010) (10-3.5 or 3*10-4 atm) and rainwater in 
equilibrium with atmospheric CO2 has a pH of 5.6 (Stumm and Morgan, 1996).  Significantly higher PCO2 
levels of 10-1 to 10-3 atm are observed in soil than in the atmosphere (Langmuir 1971; Stumm and Morgan, 
1996; Drever, 1997; McPherson, 2009). 
 
The pH in most groundwater is controlled in part by effects of dissolved CO2 and the amount of gas 
dissolved affected by the temperature and pressure (Hem, 1963). The additional CO2 from the soil 
increases the amount of CaCO3 the water can dissolve (Drever, 1997) which increases the content of Ca2+ 
(Appelo and Postma, 2005). Lowering the pH causes more CaCO3 to dissolve, and raising the pH causes 
precipitation of CaCO3 (Appelo and Postma, 2005).  

 
The distribution of DIC species can be calculated for two idealized cases: open and closed system of 
carbonate dissolution. In an open system (Fig. 10) the solution exchanges with either CO2 gaseous phase 
or the solid (CaCO3) (IAEA and UNESCO, 2000). The CO2 partial pressure is constant and the CO2 which 
has been consumed by dissolution of calcite is replaced with new so the dissolution of calcite is not limited 
until the water carbonate equilibria is reached (Appelo and Postma, 2005). Examples of open system are 
streams and shallow lakes, and the upper, wind-mixed regions of the oceans (Lower, 2010). In the closed 
system (Fig. 11) the transport of CO2 between the atmosphere and the system is closed with respect to 
CO2 (Appelo and Postma, 2005). PCO2 is changing in dependence of dissolved carbonate species 
distribution, as a function of pH. Examples of closed systems are deep regions of stratified bodies of water 
and the air component of soils (Appelo and Postma, 2005; Lower, 2010). If CO2 is not replenished, the 
amount of calcite that water can dissolve is essentially limited by the amount of CO2 present initially 
(Drever, 1997), so more calcite will dissolve under open system than in closed system conditions (Appelo 
and Postma, 2005). 
 

 
Figure 10: Open system (adapted after 
Snoeyink and Jenkins, 1980) 

 
Figure 11: Closed system (adapted after 
Snoeyink and Jenkins, 1980) 
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The main difference between open and closed systems is that in the open system the concentration of 
carbonic acid (H2CO3) remains constant due to constant CO2 supply, where concentrations of DIC varies 
with pH, whereas in the closed system the concentrations of DIC remain constant (Snoeyink and Jenkins, 
1980). 
 
 
2.3.2.7. General silicon (Si) geochemistry 
 
Silicon in groundwater is mainly found in the form of silicon dioxide (SiO2) and (ortho)silicic acid (H4SiO4). 
It is a major constituent of nearly all rocks with exceptions of carbonates. The simplest mineral form of Si 
is silica or quartz (SiO2) which is an important component of detrital sedimentary rocks and felsic and 
intermediate igneous rocks (feldspar, ferromagnesium and clay minerals, amorphous silica, chert and 
opal). Silica in metamorphic rock types includes high silica rock types (gneiss, migmatite, and slate), and 
low silica rock types (eclogite and amphibolite). Quartz has very low solubility, and silica distribution is pH 
dependent, and its soluble form is the weak H4SiO4 (De Vos et al., 2006). Groundwater SiO2 content in 
geothermal waters are typically high due to higher solubility of quartz at higher temperatures (Singhal and 
Gupta, 2010). Weathering of minerals is the primary source of Si in water. Quartz, which is the 
commonest and the most stable form of SiO2, has a lower solubility than other forms of SiO2, e.g., opal or 
chalcedony (De Vos et al., 2006).  
 
Silicates and other “insoluble rocks” are also soluble to some degree under certain chemical conditions 
and yield the minor or trace constituents in groundwater (Tóth, 1999). Groundwater in recharge area of 
igneous rocks dissolved very little mineral matter due to relative insolubility of rock composition, where 
mostly silica is added to groundwater (Todd and Mays, 2005). 
 
HCO3

- derives mainly from the soil zone CO2 at the time of weathering of minerals of the parent rocks. Soil 
zone contains elevated CO2 pressure due to the decay of organic matter and root respiration, and forms 
with rainwater the H2CO3 (Subba Rao and Surya Rao, 2010): 
 
(cations)(silicates)+H2CO3→H4SiO4 + HCO3

- + cations + clay minerals.               (16) 
 
Concentrations of Si in fresh water range typically from 1 to 30 mg/L (Hem, 1970; Todd and Mays, 2005) 
and higher in groundwater from deeper aquifers due to longer residence time (Cox, 2003).  Low silicate 
concentrations are observed in stream water (<3.5 mg/L) found over the central Alps, Slovenia and W 
Croatia (De Vos et al., 2006). In groundwater silica concentration also strongly depends on adsorption of 
dissolved silica onto clay minerals as well as neoformation of (secondary) silicate minerals (mainly clay 
minerals).  
 
There is no maximum permitted level for drinking water purposes for Si according to Rules on drinking 
water (2004). 
 
 
2.3.2.8. General sodium (Na+) geochemistry 
 
Sodium is one of the alkali metals like Li, K, Rb, and Cs. The most common minerals containing sodium 
are evaporates (NaCl), silicate minerals (feldspars albite and nepheline), clay minerals (Na-mica), 
carbonates, sulphates and rarly phosphates, nitrates, and borates (De Vos et al., 2006). Other natural 
sodium sources are maritime precipitation and sea spray, hot springs, and brines (Hounslow, 1995). In 
addition sodium commonly results from an ion exchange process, when groundwater flows through clay-
bearing aquifer (usually montmorillonite). Ca2+ ions typically replace Na+ from the surface of clay minerals 
which causes groundwater Ca2+ concentration to decrease, and Na+ to increase (Drever, 1982; Hounslow, 
1995):  
 
2Na-clay + Ca2+ → Ca-clay + Na+.                                                                                         (17) 
 
This exchange causes higher Na+ concentrations and softer water (decreased Ca2+ and Mg2+ 
concentrations) (Hounslow, 1995) and is controlled naturally or anthropogenically (by applying gypsum). 
Reverse effect is less common (Hem, 1970). Anthropogenic sources of sodium include waste disposal 
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and landfill sites (Hounslow, 1995; Hem, 1985; Todd and Mays, 2005), pumping of fresh water from 
coastal aquifers (intrusion of saline water), application of salts (NaCl) for deicing roads, and use of soaps 
(Alley, 1993; De Vos et al., 2006). 
 
Sodium in water is very soluble and mobile, and can have in natural waters a wide range of 
concentrations (Jordana and Batista, 2004). Generally less than 200 mg/L of Na+ is found in natural 
waters (Hounslow, 1995; Hem, 1985; Todd and Mays, 2005). Rainwater contains about 1 mg/L and brines 
higher than 100 g/L of Na+ (De Vos et al., 2006). 
 
The allowed maximum permitted level for drinking water purposes is 200 mg/L of Na+ in water (Rules on 
drinking water, 2004).  
 
 
2.3.2.9. General chloride (Cl-) geochemistry 
 
Chloride is very mobile and is not affected by the pH or redox conditions (Hem, 1970; De Vos et al., 2006). 
Chloride does not form insoluble salts (except at extreme salinities) and is strongly adsorbed on mineral 
surfaces (Hem, 1970). Most chloride in groundwater is present as NaCl and KCl, and chloride 
concentration may exceed the sodium due to base-exchange phenomena. Calcium and magnesium 
chloride waters are rare (Karanth, 1987). Chloride salts are highly soluble and very mobile, and are widely 
used as tracers, because they do not react with minerals of aquifer rocks once they enter the solution. 
High salty water can cause corrosion of metals. 
 
Chloride is present in various rock types in very low concentration. Chloride-bearing minerals are found in 
igneous rocks (sodalite and apatite), in metamorphic rocks, and in sedimentary rocks (evaporates) (Hem, 
1970; De Vos et al., 2006). Besides weathering of rocks, minerals and soil, the natural sources of chloride 
are associated with thermal water reservoirs, atmospheric deposition (sea spray and maritime 
precipitation), natural saline groundwater, and volcanic activity (Mullaney et al., 2009). The common 
anthropogenic sources of chloride are use of salt for deicing paved surfaces, oil- and gas-field brines, 
leaching from municipal landfills, the treatment of drinking water and wastewater, discharge of wastewater 
from treatment facilities or septic systems (sewage), from animal feeds (and manure), use of agricultural 
products (pesticides and fertilizers), irrigation from deep groundwater sources (Mullaney et al., 2009), 
improper drilling of wells between fresh and saline water aquifers (Richtef and Kreitler, 1992), and 
intensive pumping of fresh water near the coast (Richtef and Kreitler, 1992; De Vos et al., 2006).  
 
Common Cl- concentrations in natural waters are less than 10 mg/L in humid regions, and higher in more 
arid areas (Hounslow, 1995; Hem, 1985; Todd and Mays, 2005). The allowed maximum permitted level for 
drinking water purposes is 250 mg/L of Cl- in water (Rules on drinking water, 2004).  
 
 
2.3.2.10. General nitrogen (NO3

-) geochemistry 
 
The natural sources of NO3

- are found in the atmosphere, soil, rocks, legumes, and plant debris (Widory et 
al., 2004). Nitrogen minerals are rarely found in the nature; in metamorphic and igneous rocks they occur 
as trace constituents in the form of NH4

+, and in sediments and sedimentary rocks as NH3
+ (Wedepohl, 

1978). Because they are readily soluble, minerals with nitrogen as a major constituent are rare (De Vos et 
al., 2006). Anthropogenic sources of nitrate are found in wastewater treatment effluent (municipal or 
industrial sludge), landfills, septic tank systems, animal manure (hog, cattle, and poultry), agrochemicals 
(nitrogen fertilizers: commercial or livestock waste) (Hounslow, 1995), nitrogen oxides emitted by the 
combustion of fossil fuels in power stations and also from vehicles (Hem, 1985). 
 
In water nitrogen occurs as nitrate (NO3

-), nitrite (NO2
-), nitrogen gas (N2), ammonium (NH4

+), ammonia 
(NH3), dissolved organic nitrogen (DON), and in particulate form, which is usually organic, but may contain 
inorganic nitrogen. These species depend on the pH, redox conditions, and temperature. Under aerobic 
(oxic) conditions NO3

- dominates, and under redox (anoxic) conditions NH4
+.  

 
The primary source is nitrogen gas (N2) which is converted to (organic nitrogen (NO3

-) by some plant 
species (nitrogen fixation) Fig. 12). The decay of plant and animal material is decomposed from organic 
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compounds to inorganic ammonium salts by microorganisms (ammonification) which transfers NH4
+ to 

NO2
- and NO3

- (nitrification) (Hounslow, 1995). Because NO3
- is highly mobile and is not strongly absorbed 

it freely moves through the aquifer and is highly susceptible to leaching through the soil; also if excess 
fertilizer nitrogen is present in the soil, or the soil is overirrigated (Alley, 1993). This is because NO3

- is a 
negatively charges ion, and since soil particles are also negatively charged, there is very little adsorption, 
and NO3

- is easily transported through the soil horizon by the infiltrating waste water and rain water. Once 
in groundwater NO3

- continues to move unimpeded, generally migration concurrently in the direction and 
velocity of the groundwater itself (Taylor, 2003). 
 

 
Figure 12: Sources and pathways of nitrogen from the atmosphere, biosphere, soil systems, and 
hydrosphere (Freeze and Cherry, 1979) 
 
Denitrification is the reduction of NO3

- to N2 gas which is released to the atmosphere. This usually occurs 
under anaerobic conditions (closed aquifers), if organic carbon is available. Groundwater that is rich in 
oxygen and lacking in carbon is not likely to have any significant denitrification occurring. On the other 
hand, deeper anoxic groundwater zones or shallow groundwater entering organic rich riparian buffer 
zones may have substantial denitrification (Taylor, 2003). More details about the nitrogen cycle is found in 
Stumm and Morgan (1996) and others. 
 
Natural NO3

- concentrations in groundwater are generally up to 10 mg/L NO3
- (Todd and Mays, 2005; 

Cushing et al., 1973) with natural background of 0.1 mg/L (Nolan, 2003). In Ljubljana field aquifer the 
natural background was estimated between 1.7 to 5.6 mg/L NO3

- (Bračič-Železnik, 2005). Higher natural 
concentrations (100―400 mg/L) are observed in groundwater from organic-rich shales in Canada and 
USA (Quevauviller et al., 2009), or groundwater associated with leguminous vegetation (Edmunds and 
Gaye, 1997). In Slovenia no such high natural groundwater NO3

- concentrations have been reported, and 
groundwater nitrate is washed from unfertilized vegetation cover into the aquifer, does not exceed the 
maximum allowable concentration for nitrate in the drinking water (50 mg/L) Pintar (1993). Increased NO3

- 
concentrations may indicate contamination of anthropogenic origin (Hounslow, 1995; Hem, 1985), which 
is mostly due to use of artificial or natural fertilizers, leakage of sewage systems and cesspools, 
contamination from the surface water, traffic and the atmosphere. 
 
The most common maximum concentration allowed in drinking water for NO3

- is 50 mg/L (11.3 mg/L NO3
--

N), also in Slovenia (Rules on drinking water, 2004). 
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2.3.2.11. General ammonium (NH4
+) geochemistry 

 
Ammonium may occur naturally at low concentrations in many anaerobic groundwaters. High ammonium 
concentrations may be found in waters from ultrabasic rocks and thermal springs. The anthropogenic 
sources are found in application of inorganic fertilizers and manure, leakage from sewage or septic tanks, 
and landfills, which are associated with anaerobic conditions (Quevauviller et al., 2009).  
 
The maximum permitted level for drinking water purposes is 0.5 mg/L of NH4

+ in water (Rules on drinking 
water, 2004).  
 
 
2.3.2.12. General potassium (K+) geochemistry 
 
Potassium is one of alkali metals (together with Li, Na, Sc, and Rb) and a major constituent of many rock-
forming minerals: silicate minerals (alkali feldspar (orthoclase and microcline), leucit, biotite, muscovite, 
phlogopice, and some amphiboles), phosphate, halide, sulphate minerals, and evaporate deposits (e.g. 
sylvite). Potassium is a major constituent in many igneous rocks, and argillaceous sediments and shales 
(illite shales). In carbonate rock potassium is present as detrital silicate material (clay) in the non-
carbonate fraction. In the sand, sandstone, and non-detrital siliceous sediments potassium occurs as K-
feldspar, K-mica, and glauconite. Potassium ion is very mobile but is readily incorporated into clay-mineral 
lattices, and is readily taken up by plants for growth (De Vos et al., 2006). Potassium is also found in the 
sea water (Hem, 1970). Potash fertilizers (agrochemical or organic) are the main anthropogenic source of 
potassium (KCl, K2SO4, KNO3) (De Vos et al., 2006). Important source of potassium is also surface water 
used for irrigation (Ramesh and Jagadeeswari, 2012). Many potassium salts are important for chemical 
and medicinal applications (e.g. nitrate, carbonate, chloride, bromide, …) (De Vos et al., 2006)   
 
Generally less than 10 mg/L of potassium in natural waters is common (Hounslow, 1995; Hem, 1985; 
Todd and Mays, 2005; Jordana and Batista, 2004). Concentrations exceeding a few tens of mg/ L are 
unusual, except in water with high dissolved solids content, or water from hydrothermal systems; e.g. sea 
water contains on average 390 mg/L K+ (Hem, 1985). There is no maximum permitted level for drinking 
water purposes for K+ according to Rules on drinking water (2004).  
 
 
2.3.2.13. General sulphate (SO4

2-) geochemistry 
 
The dominant sulphur species in most natural environments, which depend on the pH and redox 
conditions, are sulphate (SO4

2-) and sulphide (S2-). Natural sources of sulphate in groundwater are found 
in very soluble evaporate rocks (gypsum, anhydrite, and epsomite) (De Vos et al., 2006), and less soluble 
barite and celestine (Hem, 1970). Major source of sulphate is also pyrite found in sulphide ore deposits, 
which is commonly associated with strongly reducing conditions from organic sulphur compounds (coal, 
petroleum). Sulphur is also found in the silicate minerals, e.g. feldspar, mica, pyroxene, and sodalite and 
non-silicate apatite (De Vos et al., 2006). Sulphur may be also emitted by volcanoes, fumaroles and 
springs, and the solution of dust particles. Particles of sea salt are also an important source of 
atmospheric sulphate (Hem, 1970). High groundwater SO4

2- concentrations can be associated with 
geothermal waters (Hounslow, 1995; Hem, 1970). Anthropogenic sources of SO4

2- include mining and 
smelting operations, application of agrochemicals, coal processing activities (Quevauviller et al., 2009), 
combustion of fuel (Hem, 1970), wastes from industries, and vulcanisation of rubber (De Vos et al., 2006). 
 
The natural concentration of SO4

2- in waters less than 300 mg/L is common (Hounslow, 1995; Hem, 1985; 
Todd and Mays, 2005) and in rainfall up to 10 mg/L (Hem, 1970). The maximum permitted level for 
drinking water purposes is 250 mg/L of SO4

2- in water (Rules on drinking water, 2004).  
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2.3.3. Trace constituents  
 
Trace elements are generally present in small concentrations in natural water system. They are detectable 
in groundwater from 0.0001 to 0.1 mg/L (Al, As, Ba, Br, Cd, Cr, Co, Cu, Ge, I, Li, Mn, Mo, Ni, P, Pb, Rb, 
Sb, Se, Ti, U, V and Zn), or less than 0.001 mg/L (Ag, Au, Be, Bi, Ce, Cs, Ga, In, La, Nb, Pt, Ra, Ru, Sc, 
Tl, Th, Sn, W, Yb, Y, and Zr) (Harter, 2003).  
 
 
2.3.3.1. Iron (Fe) in groundwater 
 
Iron is found in igneous rocks (amphiboles, ferromagnesian micas, ferrous sulphide, ferric sulphide or iron 
pyrite, and magnetite), and in sandstone rocks (oxides, carbonates, and sulphides or iron clay minerals) 
(Todd and Mays, 2005). The solubility of iron is strongly redox and pH controlled. In reducing 
environments the oxygen content drops and increases the solubility of some elements (e.g. iron, 
manganese, sulphur) (Nelson, 2002). The causes for reducing reactions are from organic matter either as 
natural or anthropogenic sources. Low iron concentrations can be explained by the oxidation of Fe2+ under 
the oxygen conditions in aquifer followed by the precipitation as iron oxyhydroxides. The dissolution of iron 
from silicate minerals is a slow process normally, but shallow weathering of iron-bearing minerals may 
produce accumulation of ferric oxide or hydroxide (Hem, 1970). Anthropogenic sources of iron include the 
iron and steel industry, sewage and dust from iron mining (Reimann and de Caritat, 1998). Iron sulphate is 
also used as a fertiliser and herbicide (Reimann et al. 2003). Concentrations range generally less than 0.5 
mg/L (in fully aerated water) and rarely as much as 50 mg/L (pH < 8.0) (Todd and Mays, 2005). 
 
The maximum permitted level for drinking water purposes is 200 µg/L of Fe in water (Rules on drinking 
water, 2004).  
 
 
2.3.3.2. Manganese (Mn) in groundwater 
 
Iron is often accompanied by Mn which remains longer in solution under oxidising conditions, whereas 
iron oxidises and precipitates (Hem, 1970). Manganese is found in metamorphic and sedimentary rocks 
and mica biotite and amphibole hornblende minerals (Todd and Mays, 2005). Other natural atmospheric 
sources of manganese include ocean spray, forest fires, vegetation, and volcanic activity. The major 
anthropogenic sources of environmental manganese include municipal wastewater discharges, sewage 
sludge, mining and mineral processing, emissions from alloy, steel, and iron production, combustion of 
fossil fuels, and, to a much lesser extent, emissions from the combustion of fuel additives. Manganese 
depends on the pH and redox conditions (CIDAD, 2004). The concentration in natural water is usually less 
than 0.20 mg/L (rarely 10 mg/L) (Todd and Mays, 2005). 
 
The maximum permitted level for drinking water purposes is 50 µg/L of Mn in water (Rules on drinking 
water, 2004).  
 
 
2.3.3.3. Chromium (Cr) in groundwater 
 
Chromium is found in minerals like chromite, magnetite, ilmenite, pyroxene, amphibole and mica. 
Chromium has a low mobility, especially under moderately oxidising and reducing conditions and near 
neutral pH. Its mobility in soil depends on the pH, Eh, and organic matter. Anthropogenic sources of 
chromium are found in industry production (steel production, leather tanning, and electroplating 
operations) (De Vos et al., 2006). 
 
Concentrations of Cr in uncontaminated natural water are typically less than 10 μg/L (Hem, 1985). The 
maximum permitted level for drinking water purposes for Cr is 50 µg/L (Rules on drinking water, 2004).  
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2.4. Data analysis techniques 
 
2.4.1. Statistical methods 
 
In order to understand the chemical and isotopic composition of sampled groundwater and their mutual 
correlations or dependences, the basic statistics/tables (BS), bivariate methods (e.g. correlations), and 
multivariate methods (i.g. factor and cluster analysis) were used. All statistical analyses were performed in 
the statistical software STATISTICA 6.1 (StatSoft, 2013). 
 
 
2.4.1.1. Descriptive statistics and normality of distribution 
 
Statistical normality of elemental distribution is estimated based on frequency tables and visually with the 
examination of shapes of histograms of either natural or transformed variables. This is performed by the 
observations of measures of location (comparison of mean, geometric mean, median, etc.), measures of 
spread (standard deviation) and measure of shape (tests of skewness and kurtosis, and the coefficient of 
variation) (Helsel and Hirsch, 1992).   
 
The mean (X) is the arithmetic average defined as the sum of all observations divided by the number of 
observations. The geometric mean (XG) is the nth root of the product of the n observations and can be 
applied only to data of positive values. The median (Md) is the value midway in the frequency distribution. 
The standard deviation (S) is the square root of the variance. The standard error of mean (Sx) is the 
standard deviation of the sampling distribution of the sample mean and is given by the square root of the 
sample size (Davis, 2002). 
 
The most commonly used statistic for summarizing the distribution symmetry is the coefficient of 
skewness (A). The distribution of the data set is symmetrical when it looks the same to the left and right of 
the center point. The normal distribution has skewness=0, negatively skewed to the left distribution has 
skewness <0, and positively skewed to the right has skewness >0. The coefficient of kurtosis (E) is a 
measure of peakedness/flatness in the variable distribution. If it is platykurtic, the distribution has a low 
degree of peakedness (kurtosis<0), if the distribution is mesokurtic, distribution is normal (kurtosis = 0), 
and leptokurtic distribution has a high degree of peakedness (kurtosis>0) (Helsel and Hirsch, 1992; 
MedCalc, 2013, StatSoft, 2013). The histogram is an effective graphical technique for showing both the 
skewness and kurtosis of data set (MedCalc, 2013; StatSoft, 2013). Coefficient of variation (Cv) is a 
normalized measure of dispersion of a probability distribution and is expressed as a function of mean 
Cv=S/X (Davis et al., 2002; MedCalc, 2013; StatSoft, 2013).  
 
The Kolmogorov-Smirnov test (KS) is a non-parametric test that tries to determine if two datasets differ 
significantly by comparing their distribution. There are one-dimensional probability distributions that can be 
used to compare a sample with a reference probability distribution (one-sample K–S test), or to compare 
two samples (two-sample K–S test). The Kolmogorov–Smirnov test can be used to test the goodness of fit 
(Davis, 2002). Shapiro-Wilk test (W) is the preferred test of normality because of its good power properties 
as compared to a wide range of alternative tests (Shapiro, Wilk, and Chen, 1968; StatSoft, 2013).  If the p 
value is less than or equal to 0.05 the test rejects the hypothesis of normality, and failing the normality test 
allows you to state with 95 % confidence the data does not fit the normal distribution. If the value is 
greater than 0.05, the test passes the normality test only allows you to state no significant departure from 
normality was found (Laerd Statistics, 2013). The Chi-Square test (χ2) is a statistical test commonly used 
to investigate the degree of fit between the frequency of occurrence of observations in an observed 
sample and the expected frequencies that are obtained from a hypothesized distribution (Huang et al., 
2008). 
 
Data transformation 
 
Many environmental variables are not normally distributed, therefore a data transformation (i.e. 
normalisation) is required. Common transformations are log or square root (Long et al., 1997; Verbovšek, 
2006, 2011b; Cukrov et al., 2009). 
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2.4.1.2. Multivariate statistical methods 
 
Multivariate analyses allow us to consider two or more variables at the same time, which enables us to 
study more complex interactions between observed variables (Davis, 2002). Three multivariate statistical 
methods were applied on the dataset to classify groundwater samples and to identify geochemical 
processes controlling groundwater geochemistry.  
 
Bivariate statistical method (correlations) 
 
Correlations refer to statistical relationship between two or more variables. Measure of the correlation 
between two variables is expressed by correlation coefficient. The most common is Pearson correlation 
coefficient (r) which is mainly sensitive to a linear relationship between two variables. If correlation r=+1, 
then the scatterplot will be a straight line with a positive slope; if r=-1, then the scatterplot will be a straight 
line with a negative slope. For |r|<1 the scatterplot appears as a cloud of points that becomes more diffuse 
as |r| decreases from 1 to 0 (Le Maitre, 1982; Bajpayee et al., 2012). The Spearman rank correlation (rs), 
which is used for ordinal data, is a nonparametric analogue to the standard correlation coefficient. 
Spearman’s r is computed by replacing the individual values for each variable with their respective ranks 
and then computing a correlation coefficient (r) using the ranks, rather than the original data (Hensell and 
Hirsch, 1992; Davis, 2002; Gauthier, 2001).  
 
Interpretation of the Spearman's rank order correlation coefficients used in this study is as follows: rs=1 to 
0.70 (strong association), rs=0.69 to 0.50 (moderate association), and rs=0.49 to 0.30 (weak association). 
 
Factor analysis (FA) 
 
Factor analysis (FA) is a method which is used to simplify the quantitative description of multivariate 
observations by determining the minimum number of new variables - factors (Le Maitre, 1982). The 
procedure reduces the original data matrix from one having n variables necessary to describe the N 
samples to a matrix with m factors (m<n) for each of the N samples (Davis, 2002; Johnston, 1980). Factor 
analysis is always done with standardized data so that individual variables have equal weight in their 
influence on the underlying variance-covariance structure (Glover et al., 2005). High factor loadings are 
considered those above 0.75, medium ones those which lie between 0.50 and 0.75, and weak those 
between 0.40 and 0.50 (Panda et al., 2006). The variables used in the analysis produce different 
variances called eigenvalues, which give a measure of the significance of the factor – the most significant 
factors are the one with the highest eigenvalues. Eigenvalues of 1.0 or greater are considered significant 
(Kim and Mueller, 1978). Each factor joins separate variables and finally correlates them directly or 
indirectly with a common process. Initial data is standardised in order to eliminate the influence of different 
units. Factor loadings are optimized with varimax rotation method which preserves the orthogonality of 
factor axes (Davis, 2002). Meaning that each original variable tends to be associated with one (or a small 
number) of factors, and each factor represents only a small number of variables (Abdi, 2003). 
 
Cluster analysis (CA) 
 
Cluster analysis is a technique designed to perform classification by assigning observations into relatively 
homogeneous groups or clusters. Variables within a cluster are similar to each other but different from 
those in other clusters. The result of clustering is a dendrogram which provides a visual summary of 
clustering process, and similarity levels at which groupings change. Known are several cluster techniques 
which are based on agglomeration of more elements according to their composition, giving different 
results: partitioning methods, arbitrary origin methods, mutual similarity procedures, and hierarchical 
clustering (Davis, 2002). The hierarchical clustering joins the most similar pair of variables and forms 
higher clusters step by step (Davis, 2002). One of the approaches is that the initial cluster is formed by 
linkage of two samples with the greatest similarity. Widely used linkage rule is Ward’s method which uses 
an analysis of variance (ANOVA) approach to evaluate the distances between clusters, attempting to 
minimize the sum of squares at any two (hypothetical) clusters that can be formed at each step. The 
squared Euclidean distance usually gives the similarities between two samples and a distance can be 
represented by the “difference” between analytical values from both samples (Ramesh and Riyazuddin, 
2008; StatSoft, Inc. 2006; Romesburg, 2004; Eriksson, 1985).  
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2.4.2. PHREEQC 
 
In the programme PHREEQC a simulation of a variety of reactions and processes of aqueous 
geochemical calculations is performed. This programme is based on an ion-association aqueous model 
and has capabilities for speciation and saturation-index calculations, reaction-path and advective transport 
calculations involving specified irreversible reactions, mixing of solutions and more (Appelo and Postma, 
2005; Parkhurst and Appelo, 1999). 
 
 
2.4.3. AquaChem 
 
The graphical and numerical analyses of geochemical data sets were performed in AquaChem®5.1. The 
programme features a powerful database that can be customized and configured to include an unlimited 
number of attributes per sample and a built-in database of inorganic chemicals that are commonly used 
for geochemical analyses, calculations and plotting (AquaChem, 2006). 
 
In AquaChem the ion pattern was defined according to the concentration of the dominant dissolved 
species measured in groundwater.  For the hydrogeochemical facies determination, definitions according 
to Back (1961) based on the hydrochemical trilinear Piper diagram (Piper, 1944) were used (Domenico 
and Schwartz, 1990). The diagram displays the relative concentrations of the major cations on the left 
triangular diagram (Ca2+, Mg2+, Na+ + K+) and anions on the right triangular diagram (HCO3

-, Cl-, and SO4
2-

) on two separate trilinear plots, together with a central diamond plot, where the points from two trilinear 
plots are projected. The central diamond shaped plot is used to present the overall chemical character of 
the sampled water (Hill, 1940; Piper, 1944).  
 
Additionally the saturation indices (SI) for calcite and dolomite in groundwater (Langmuir, 1997) were 
calculated in order to determine the saturation state of a mineral with respect to a given water 
composition. The saturation index is defined as:  
 
SI = log (IAP/Kt)                                            (18) 
 
 
If the saturation index is less than zero, the mineral is unsaturated with respect to the solution and the 
mineral might dissolve very slowly or not at all, depending on the kinetics of the reaction. If the saturation 
index is greater than zero, the mineral might precipitate but cannot dissolve. If the saturation index is close 
to zero, the mineral may not be reacting at all or may be reacting reversibly, in which case the mineral 
could be dissolving or precipitating (Appelo and Postma, 2005). Since SI is the logarithmic quotient, a 
value of 1 signifies a ten-fold supersaturation and a value of -2 a hundred-fold undersaturation in relation 
to a certain mineral phase (Merkel and Friedrich, 2002). 
 
 
2.4.4. ArcMap 
 
Spatial data are analysed in ArcMap, which is the main component of Esri's ArcGIS (GIS – Geographical 
Information System) suite of geospatial processing programs, and is used primarily to view, edit, create, 
and analyze geospatial data. With ArcMap we explore data within a data set, symbolize features 
accordingly, and create hydrochemical maps of different parameters for the entire research area (spatial 
distribution) (Esri Inc., 2001). 
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3. MATERIALS AND METHODS  
 

This section covers description of the study area and its natural caracteristics and land use. Additionally 
the emphasis is given on the selection of sampling locations as well as on the selection of hydrochemical 
parameters analysed in groundwater.  
 
3.1. Description of the study area 
 
The study area is Slovenia, covering around 20,273 km2, with its very diverse geomorphologic, geological, 
pedological, hydrological and climatic characteristics.  
 
 
3.1.1. Geographical description of study area 
 
Slovenia is located at the junction of four major European relief units – the Alps, the Dinaric Alps, the 
Pannonian Basin and the Adriatic Sea basin (Appendix 1). Altitude changes from the sea level (0 m a.s.l.) 
and up to the altitude of 2,864 m (Mt. Triglav). Only 7 % of the surface of Slovenia lies below 200 m a.s.l., 
45 % between 200 m and 500 m a.s.l., 36 % between 500 m and 1,000 m a.s.l., and 9 % between 1,000 
m and 1,500 m a.s.l. Approx. 3 % of the territory is higher than 1,500 m (Frantar et al., 2008). Several 
types of morphology can be found. Plains are formed by accumulation of sediments of major rivers with 
altitude ranging up to 400 m. In the hills (up to 1,000 m a.s.l) in eastern and central Slovenia erosion 
processes dominate. In the mountains of northern Slovenia, peaks and ridges reach up to and above the 
forest line (above 1,700 m a.s.l.) (Fridl et al., 1998). 
 
 
3.1.2. Geological description of study area  

 
The Slovenian territory is a site of complex geological processes from the Paleozoic era to the present, 
with all main types of rocks present: sedimentary, metamorphic and igneous (Appendix 2). By far the most 
abundant are sedimentary rocks that make up the greatest part (around 93 %) of the Slovenian territory. 
Among the sedimentary rocks, Mesozoic to Paleocene carbonate rocks (limestone and dolomite) are 
characteristic, especially for the southern and north-western parts of the country (Julian Alps, Kamnik-
Savinja Alps, Karavanke Mts., high Dinaric Karst, low Karst of Dolenjska, low karst plain of Bela krajina, 
and Kras) (Javornik et al., 1989; Buser, 2010). Karst covers almost half of the Slovenian surface (Gams, 
1974) where 35 % is on limestone and about 8 % on dolomite (Orožen Adamič, 2004). Permo-
Carboniferous clastic sediments (shale, quartz sandstone and conglomerate) are found in the central part 
of the country (Posavje Hills), the Paleogene flysch rocks in south-western Slovenia (Istria and Gorica), 
and Neogene clastic sediments (sandstone, marl, and siltstone) in eastern and central parts of Slovenia). 
Quaternary clastic sediments (around 10 %), such as gravel and sand, cover river basins from the central 
part to the north-eastern territory of the country (e.g. the basins of tectonic origin such as Ljubljana and 
Celje basins and Krško-Brežice basin) (Javornik et al., 1989; Buser, 2010). Along the Drava and Mura 
rivers in the north-western part of the country there are also wide valleys covered with gravel (Frantar et 
al., 2008) of metamorphic rocks, clayey marl, and sandy sediments (Drobne et al., 1976). On karstic fields 
and river basins (e.g. rivers Lendava, Ščavnica, Pesnica, Dravinja, Vipava) in less erosion-resistant rocks 
the fine-grained clay and silty sediments have developed (Bogataj et al., 2012). Igneous rocks (around 
3 %) make up smaller parts of Slovenia, mainly the north-eastern and northern parts (Pohorje Mt., Kozjak 
Mt., Karavanke Mts.), as well as a belt across the central part of the country and Goričko hills. The central 
part of Pohorje Mt. is built of a large granodiorite batholit where cizlakite, endemic Slovenian variety of 
gabbro, is found. This massif continues to north-west into dacite. Igneous rocks of Pohorje Mt. and Kozjak 
Mt. are of Oligocene to mid-Miocene age. Furthermore, Triassic granite, syenogranite, granite-porphyry 
and Oligocene tonalite are found in Karavanke Mts. Small areas of igneous rocks (volcanic and 
volcaniclastic) can also be found in the belt through central Slovenia (areas between Gornji Grad and 
Smrekovec; Dramlje and Rogaška Slatina; Jelovica, Idrija hills, and Škofja Loka hills; Kamniška Bistrica 
and Kokra valley) where mainly mid-Triassic porphyre, keratophyre, diabase and basalt prevail. The 
oldest, metamorphic, rocks are not abundant in Slovenia. Paleozoic (or perhaps even Precambrian) 
metamorphic rocks (around 4 %) are found in smaller areas of the north-eastern and northern parts of 
Slovenia (Pohorje Mt., Strojna, Karavanke Mts. and Kozjak Mt.) as gneiss, schist, amphibolite, eclogite, 
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marble, and quartzite. Also low and medium grade metamorphic rocks from early Paleozoic (phyllite and 
mica schist) are found north of Drava River, while high temperature metamorphic rocks are found at 
Pohorje Mt. where mica schist and gneiss dominate (Javornik et al., 1989; Buser, 2010).  
 
 
3.1.3.  Types of soil  
 
Due to its lithological and climate diversity, and roughness of the terrain, the territory of Slovenia exhibits 
in a small area a variety of soil types (Appendix 3). The soils are strongly linked to the types of rocks. The 
most widespread soil types in Slovenia are Eutric Leptosols which prevail mostly in the mountains of 
Alpine regions and in Karst regions (Dinaric mountains), where they interweave with Eutric Cambisols. 
Dystric Cambisols develop on non-carbonate rocks of the hilly and mountainous regions (Pohorje Mt., 
Smrekovec Mt., the Posavje hills and Škofja Loka hills) and the non-carbonate flysch of the Brkini hills. 
The soils are characterized by increased acidity and low nutrient content. Highly fertile variety of Eutric 
Cambisols cover carbonate flysch in the Mediterranean and marl in Pannonian hills as well as the hills 
consisting of soft carbonate rocks. Eutric Cambisols interwoven with Rendzic Leptosols also cover gravel 
deposits and alluvial fans as well as glacial moraines of carbonate origin. Dystric Leptosols, shallow 
skeletic soils with increased acidity, developed on the non-carbonate gravel and sand (Dravsko polje, 
Dolinsko, Ravensko), and on the non-carbonate rocks of steep slopes. Sandy or silty loamy Fluvisols are 
common along rivers and larger creeks. On low permeable clayey deposits with shallow groundwater table 
Gleysols develop. In eastern parts of Slovenia Planosols and Stagnosols form on gentle slopes, while on 
the southern part of Ljubljana basin peat soils or Histosols are spread. Acidic Luvisols to very acidic 
Acrisols occur within the area of old gravel deposits of Gorenjska, and particularly on the leached residual 
of carbonates (infertile acric soil) in Bela krajina. Hyperskeletic Lithosols which develop on hard carbonate 
rocks and Regosols which develop on the soft carbonate rocks, are found on steep slopes of high 
mountain ridges or hilly areas (Vrščaj et al., 2005; Bernard Vukadin et al., 2008). In Karst area under the 
submediterranean climate conditions Chromic Cambisols commonly known as Terra Rossa develop 
(Vrščaj et al., 2005; Repe, 2010). Detailed description of soil types is written in Repe (2004, 2010).  
 
 
3.1.4. Meteorological conditions 
 
The characteristics of the climate in Slovenia are affected by the country's position in the temperate zone, 
the proximity of the Mediterranean sea and the Eurasian continent, and by the diversity of the relief 
(Frantar et al., 2008).  
 
Four major air masses types influence the weather in Slovenia (Pučnik, 1980): (1) maritime polar air 
masses, which originate in the Northern Atlantic and North Sea; (2) maritime tropical air masses, which 
originate predominantly in the Azores area; (3) continental tropical air masses, originating in northern 
Africa and Asia Minor; and (4) continental polar air masses, which originate in Scandinavia, Finland, 
Russia, and also the Pannonian Plain.  
 
Due to its specific geographic diversity, Slovenia is influenced by several climate types. There is a mixing 
of: a) continental climate, which influences the majority of the country; b) Alpine climate that prevails in the 
high mountains in the north-western part of the country; and c) the coastal sub-Mediterranean climate that 
influences the south-western part of the country (Rakovec and Vrhovec, 2007). In most parts of the 
country, except in mountains and along the coast, a moderate, warm, humid climate prevails. The 
warmest month on average is July and the coldest is January, with the exception of the high mountains 
where the coldest month is February and warmest is August. A mean temperature in January is around -
3°C, and in July around 22°C. For the south-western part of the country, a sub-mediterranean climate is 
typical, with a mean temperature of the coldest month above 4°C and of the warmest above 22°C. In the 
mountains (Julian Alps, Karavanke Mts., Kamnik-Savinja Alps, Pohorje Mt. and Snežnik Mt.) a mean 
temperature in the coldest month is around -3°C, and around 10°C in the warmest month (above 2,000 m 
under 10°C) (Fridl et al., 1998; EARS, 2006).  
 
Most precipitation in Slovenia occurs in the Alpine-Dinaric barrier (Kredarica with 3,200 mm, Vojsko and 
Postojna), and the quantities diminish towards the NE and EW (Appendix 4). There is more than 1,500 
mm of precipitation annually in the W part of the Slovenian interior. Usually, the least annual precipitation 
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occurs in the NE part of the country (Murska Sobota), on average below 900 mm/y. On the coast, there is 
an average of around 1,100 mm/y of precipitation (Portorož).The areas affected by the sub-mediterranean 
climate receive the most precipitation in the autumn months (Portorož, Bilje, Kredarica, Vojsko and 
Postojna), while areas with a more pronounced continental climate receive the most precipitation in the 
summer (Šmartno pri Slovenj Gradcu, Murska Sobota, and Maribor) (Frantar et al., 2008).  
 
 
3.1.5. Hydrological characteristics  
 
In Slovenia all types of surface water are present. Surface waters have created a dense river network with 
density of 1.33 km/km2. Hydrological network is rare only on the karst surface due to the meteoric water 
draining below the surface. Here the river network is limited to karstic disappearing streams. The Karst 
has the role of a short-term water retention area. Most surface rivers are short; more than 100 km long are 
only Sava, Drava, Kolpa and Savinja rivers. Most rivers (81.5 %) drain to the Black Sea, the rest belongs 
to the Adriatic water catchment area. The largest lake is a disappearing karst Cerknica Lake. Most natural 
lakes are of glacial origin; the largest are Bohinj Lake and Bled Lake. Also many small mountain lakes are 
found here. Slovenia lies on the northern coast of the Adriatic Sea occupying one third of the Gulf of 
Trieste. The length of the Slovenian coast is 46.6 km (Fridl et al., 1998). 
 
Great part of Slovene territory is characterized with aquifers which are categorized on the basis of their 
porosity geometry as intergranular (19.8 %), fissured (14.2 %) and karstic aquifers (33.2 %) (Drobne et al., 
1976; Prestor et al., 2002; Brenčič, 2009), the latter ones usually being combined in one category defined 
as karstic-fissured aquifers (Brenčič, 2009) (Appendix 5). Karst porosity is typical for the layers of 
limestone and partly dolomite, and fractured porosity is characteristics for dolomites (Uhan and Krajnc, 
2003; Kranjc, 1995). Areas without important quantities of groundwater are rare and they are found in less 
permeable areas (flysch rocks, sandstones, marls, metamorphic schists) (Drobne et al., 1976; Prestor et 
al., 2001; Brenčič, 2009), and have usually fractured porosity (Uhan and Krajnc, 2003). 

 
Groundwater in large intergranular aquifers on Quaternary and/or Pliocene alluvial plains is related to the 
balance and hydrodynamics of large rivers which are usually located inside larger pull-apart tectonic 
depressions. Along the rivers Drava and Mura we find the Pomurje aquifer system, the Drava River plain 
and Ptuj plain aquifer system, and along the rivers Savinja and Sava the lower Savinja valley aquifer, the 
Ljubljana plain aquifer system, the Krško-Brežice plain aquifer system, and along rivers Vipava and Soča 
the aquifer of Gorica. In the area of Goričko hills and the southern part of the Slovenske gorice hills, two 
other systems are present in the Tertiary sediments up to the lower part of the Quaternary intergranular 
aquifers. Those shallow alluvial aquifers are recharged mainly from precipitation and by infiltration of water 
into the ground from rivers and streams (Uhan and Krajnc, 2003). For an example, several intergranular 
Quaternary aquifers are connected by a water balance and cross groundwater flow with other aquifers 
(e.g. Pomurje and Krško-Brežice plain aquifer systems with lower-lying Tertiary sediments; Ljubljansko 
polje and Ljubljansko barje aquifer systems), are recharged with river water (Drava, Mura, Sava, Kokra, 
Savinja, Vipava, Soča rivers), and/or surface water from surrounding areas (e.g. Pohorje Mt., Krakovski 
gozd, Kamnik-Savinja Alps) (Brenčič, 2009). Quaternary intergranular aquifers are represented by high 
yield and high hydraulic conductivity, where the range of 5x10-3 m/s to 1x10-5 m/s is predominant (Prestor 
et al., 2001). The amount of dynamic groundwater reserves in intergranular aquifers is appr. 18.3 m3/s and 
presents about 36.8 % reserves (Kranjc, 1995). Since shallow intergranular aquifers in Slovenia are 
situated in flat river valleys, they are attracted to intense human activities, e.g. agriculture, industry, trade, 
traffic infrastructure, and high population density. Although the vadose zone of aquifer’s intergranular 
porosity acts as filter for many pollutants, groundwater is still highly vulnerable and affected by those 
activities (Krajnc et al., 2007). 
 
Karstic-fissured aquifers are strongly anisotropic with mainly one direction emphasized. Hydraulic 
conductivities and transmissivities are distributed within several orders of magnitude. These aquifers are 
significant for the appearance of big karstic springs and are found in the central, southern and north-
western parts of the country (regions of Suha krajina, Kočevski Rog, Dolenjska and Gorjanci). Large 
karstic-fissured aquifers are also present in mountainous regions (the Julian Alps, Kamnik-Savinja Alps 
and Karavanke Mts.) (Brenčič, 2009). The hydraulic conductivity coefficient ranges from 10-1 m/s for 
intensively karstified and fissured rocks to up to 10-11 m/s for massive limestones and dolomites (Prestor 
et al., 2001). Dynamic groundwater reserves in karstic-fissured aquifers, which are related to the amount 
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of precipitation (Uhan and Krajnc, 2003), are appr. 31 m3/s and store around 62 % dynamics reserves of 
groundwater in Slovenia (Krajnc, 1995). In the recharge areas of aquifers with karstic and fractured 
porosity groundwater is naturally protected with forests, and human activities are less intense compared to 
river valleys. Still wide channels enable high groundwater flow and rapid long distance transport of 
pollutants (Krajnc et al., 2007). 
 
Slovenian groundwater serves as a drinking water to more than 97 % of population where around 60 % of 
drinking water originates from alluvial (intergranualr) aquifers while 40 % from aquifers with karstic and 
fractured porosity (Krajnc et al., 2007). 
 
For water management in accordance to the European legislation, the Slovenian territory is divided into 
165 aquifer systems combined into 21 groundwater bodies (Mali, 2008; Prestor et al., 2006). 
 
 
3.1.6. Land cover and land use 
 
Land use reflects a complex relation between natural and socio-economic factors. Among the most 
important are morphology, which is reflected in altitude, slopes and hill side insolation, and others are 
colonisation, economic conditions in the past and present, and land-possession relations (Fridl et al., 
1998). Forests cover more than half of Slovenia's territory and are found in the Dinaric region of S and SE 
Slovenia, and in the Alpine region of N and W Slovenia. Agricultural land prevails mostly in the Pannonian 
and Coastal region, where cultivated fields, orchards, and vineyards are very common (Bernard Vukadin 
et al., 2008). Meadows are more common on the east compared to west side of the country, and pastures 
are found in Coastal and Alpine regions (Fridl et al., 1998). Dispersed urbanization is characteristic of 
Slovenia where urban areas are found mostly at the bottoms of the basins. Less land is covered with 
water and irrigated areas (Bernard Vukadin et al., 2008).  
 
For the purposes of this study two land cover/use digital databases were used. First, CORINE 
(COoRdinating of INformation on the Environment) Land Cover (CLC) methodology by the Ministry of the 
Environment and Spatial Planning, Environmental Agency of the Republic of Slovenia, Surveying and 
Mapping, Authority of the Republic of Slovenia, European Environment Agency (2003) at the scale 
1:100,000. This database was created on the basis of satellite photographs from year 2000 (Petek, 2004). 
Detailed description is found in Skumavec and Šabić (2005). Complete CORINE Land Cover map is not 
included because of its detailed data presentation. A legend is included in the Appendix 6. 
 
Second, Actual agricultural and forest land usage map by the Ministry of Agriculture and the Environment 
(2011) at scale 1:1,000. The source were the digital orthophoto maps based on black-and-white aerial 
photographs (1996-2001), later also with the use of other records that improved the information on the 
type of the actual land use and through field visits and measurements. Map was developed in accordance 
to Rules on evidence of actual agricultural and forestal land use (2006). The interpretative keys (Ministry 
for Agriculture and the Environment, 2013ab) are used which contain coding of actual use, instructions for 
data entry, description of certain types of actual usage and minimum area of individual types of actual 
usage. Original database dates into 2002 with several updates by the Ministry of agriculture and forestry 
(Ministry of Agriculture and the Environment, 2012b). Complete Actual agricultural and forest land usage 
map is not included because of its detailed data presentation. A legend is included in the Appendix 7.  
 
According to some users (Rikanovič, 2003) both databases have certain advantages as well as 
disadvantages, and the usage itself depends highly on the purpose and area of the study. The main 
advantage of the CLC database is that all the land use categories are presented equally, there are only 
few technical errors, and comparisons between different countries are possible. The main advantage of 
the Actual agricultural land use map is detailed information on agricultural land use. 
 
 
3.2. Sampling design 
 
Since the territory of Slovenia is very heterogeneous, composed of sedimentary, metamorphic and 
igneous rocks, diverse hydrological conditions in different types of aquifers are present, as well as very 
heterogeneous chemical and isotopic groundwater composition. Therefore the sampling network was 
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created with methodology, which could provide objectivity and transparency, in a way that all the sampling 
locations were representative of the main aquifer porosity types, defined by the aquifer’s most 
representative surface lithological and lithostratigraphic units found in Slovenia. 
 
The priority was put on those sampling locations in which recharge areas of mainly one 
lithological/lithostratigraphic unit prevails (are mostly pure/homogenous). Some sampling locations were 
chosen based on their unique lithologies (flysch) which are representative for the country. Sampling 
network design consists of sampling locations which are quite evenly distributed throughout the whole 
Slovenian area, and include important water sources of particular regions (Rižana, Težka voda, 
Zadlaščica, Domžale water pumping station, Skorba pumping station). The sampling locations were also 
chosen based on conceptual models of individual groundwater bodies (Prestor et al., 2006).  
 
Three sampling campaigns were performed from year 2009 to 2011. The focus was mostly on the 
groundwater in the shallow aquifers and not on the thermal or mineral water from deep aquifers. Sampling 
locations represent springs, observation objects (boreholes, piezometers or wells), private wells and public 
water supply wells (pumping stations), water catchments and surface waters. The last ones were sampled 
where access to spring water was not possible. 
 
Sampling was performed during hydrological conditions of base flow, which means the groundwater flow 
was permanent, and when it did not rain. The 3-year sampling covered three annual season cycles in the 
way that groundwater at each sampling location was sampled twice, in spring (March-July) and in autumn 
(August-November).  
 
Water samples were collected from total 87 sampling locations (Appendix 8) from springs (51), 
piezometers or wells (5), private wells (4), public water supply wells (18), and surface waters (9).  
 
In 2009, during second sampling period in autumn, the priority for sampling was on sampling locations in 
high mountains region in order to sample before fallen snow. Therefore, due to lack of time, the 
groundwater sampling for few sampling locations was postponed to the spring 2010. Water analysis from 
first sampling period for sampling location DEV-1 was not considered since it has been analysed in 
another laboratory. The results from Pasji rep and Potok pri dvorcu Visoko were sampled for the third time 
in 2011 to confirm the laboratory’s mistake and missing values from previous samplings.  
  
 
3.2.1. Collection of existing data 
 
For each sampling location the data about the exact location and the ownership of the object needed to be 
found. Further, the lithological (lithological profile) and technical structure of the object (depth, diameter, 
position of filter tubes, depth of fixed pump if present and so on) needed to be collected, as well as past 
geochemical and isotopic analyses and groundwater levels. The data was collected from various 
hydrogeological databases, reports from archives of the Geological Survey of Slovenia (overview of a few 
thousand reports), topographical maps and available data from the internet.  
 
 
3.2.2. Selection of hydrochemical parameters 
 
The selection of the monitored hydrochemical parameters includes the most significant parameters that 
determine both the natural background of groundwater, as well as major pollutants that occur in 
groundwater due the anthropogenic factors. Following parameters in groundwater were chosen to be 
analyzed: 
 
- physico-chemical parameters: T, pH, and EC 
- major ions: Ca2+, Mg2+, Na+, K+, HCO3

-, NO3
-, Cl-, SO4

2-, S, and Si 
- secondary major ions: B, Ba, Fe, NH4

+, P, Sr, and Zn 
- trace constituents: Ag, Al, As, Au, Be, Bi, Br, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ge, Hf, Hg, 

Ho, In, La, Li, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, 
Th, Ti, Tl, Tm,  U, V, W, Y, Yb, and Zr 
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- stable isotopic composition of oxygen (18O/16O), hydrogen (2H/1H), and carbon (13C/12C), and nitrogen 
(15N/14N)  

- tritium (3H)  
 
 
3.2.3. Sampling protocols  
 
Before the actual sampling it was necessary to check the current state of the object to see whether the 
actual sampling from the object could be performed. The exact locations of the sampling locations were 
determined by a portable GPS meter where X, Y and Z coordinates were measured. In the field the basic 
characteristics are observed: depth of the object, installed instruments, the access to object, potential 
sources of pollution in surrounding area and actual possibility to perform sampling. Additionally, the 
description of surrounding area and possible sources of pollution, accessibility to sampling points and 
possibility for water sampling needed to be examined prior sampling. 
 
Since a lot of basic decisions depend on the assessment of the groundwater quality status, the data 
needs to be reliable and able to reflect the actual state of groundwater in the aquifer. Therefore, all the 
samples are prepared according to standard procedures and guidelines given by each laboratory. They 
provide the information about the procedure of sampling, storage and transport of water samples from 
collection site to the laboratory.  
 
Standard procedures for sampling, transport and storage of groundwater samples are in accordance with 
the standards (SIST ISO 5667–11, 1996; SIST ISO 5667–06, 1996; SIST ISO 5667–03; 1996). A different 
sampling approach is required for each type of water analysis (Sundaram et al., 2009). Sampling was 
always performed regarding the weather conditions (in case of rain, sampling was postponed for at least 3 
days to sample from the base flow conditions). This was done in order to avoid direct sampling of meteoric 
water.  
 
The groundwater samples from a well or piezometer (especially unused one) were taken after pumping a 
volume corresponding to three times that of the relevant well or borehole to get fresh groundwater. This 
was done with a pump Grundfos MP-1 made out of inert material and with pumping rate of 0.2 L/s. During 
pumping the field parameters were monitored and sampling was performed when measured values were 
stable. When sampling groundwater from springs it was necessary to sample water as near as possible to 
the point at which groundwater enters the surface in order to minimize the effects of atmospheric 
contamination and degassing.    
 
 
3.2.4.  Field measurements  
 
Measurements of physical parameters like electrical conductivity (EC), pH and water temperature (T) of 
sampled water were carried out in situ with the portable WTW pH/Conductivity measuring instrument 
pH/Cond 340i SET (Fig. 13). The precision of physical parameters measurement is ± 0.01 for pH, ± 0.5 % 
for EC and ± 0.1 °C for temperature. 
 
Before taking readings, pumping was carried out until the meter readings were stable for each parameter. 
The pH electrode was calibrated using 4.0, 7.0, and 10.0 buffer solution, and KCl solution of 200 and 500 
µS/cm for EC.   
 
In private wells and piezometers groundwater levels were measured by groundwater level measurement 
device on the site (Fig. 14). 
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Figure 13: Groundwater field parameters 
measurement 

Figure 14: Groundwater level measurement 

 
3.2.5. Field sampling 
 
Water samples were taken for the chemical analysis of major and minor ions, stable and radioactive 
isotope analysis, and the trace elements analysis, according to laboratory guidelines for each type of 
analysis. Each water sample was sealed in a pre-cleaned polyethylene bottle which has been rinsed three 
times with sampled water prior sampling, filled to the rim with water and capped within seconds of 
collection to minimize exposure to the air (to avoid degassing of CO2). Changes caused by escape of CO2 
from the water reflect on the pH, HCO3

-, and other ions (Freeze and Cherry, 1979). For major ions and 
tritium analyses 1 L of water sample was required for each, 2 times per 1 L for δ14N analyses, for stable 
isotopes of oxygen (δ18O) and deuterium (δ2H) 0.1 L, and for stable isotope of dissolved inorganic carbon 
(δ13C-DIC) 3 times per 12 mL. For all trace elements 50 mL of water was required which first needed to be 
filtered on the site using hand-pump on site through a 0.45 µm cellulose membrane filter into pre-cleaned 
sample bottle, then immediately acidified with ultrapure nitric acid (HNO3) to the pH<2 (Figs. 15-18). Water 
samples were then stored in a cooling box (<4°C) and later, transferred to different laboratories. During 
sampling also reserve and blank samples were taken to control accuracy of the analytical procedures.  
 

 
 

 
 

Figure 15: Sampling spring water Figure 16: Water filtration 
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Figure 17: Groundwater samples from one 
sampling location 

Figure 18: Required field equipment 

 
 
3.3. Analytical methods 
 
3.3.1. Chemical analyses of groundwater 
 
Major cations and anions in sampled groundwater were analysed at the laboratory of Drinking water and 
Sewerage System Public Utility, Ljubljana, Slovenia. Table 3 presents the standards and equipment used 
for determining measured parameters in water. 
 
Table 3: Standards and equipment used for determining measured parameters in water  

Parameter Standard Laboratory instrument 

pH 
 

SIST ISO 10523, 2010 
WTW inoLab pH/ION/Cond 750 
instruments 

electrical conductivity (at 20°C) 
 

SIST EN 27888, 1998 
WTW inoLab pH/ION/Cond 750 
instruments 

alkalinity (HCO3
-)* 

ASTM D1067-92, 1996 
(Modified) 

Buret and Erlenmeyer flask 

ammonium (NH4
+) SIST ISO 7150-1, 1996 

Spectrophotometer (Varian Cary 
50 Bio) 

calcium (Ca2+),  
magnesium (Mg2+),  
sodium (Na+),  
potassium (K+),  
chloride (Cl-),  
nitrate (NO3

-)  
sulphate (SO4

2-) 

 
 
 

SIST EN ISO 14911, 2000 
 
 

Ion chromatograph (IC) Metrohm

iron (Fe2+ and Fe3+)* 
Ferrous Iron by Modified Method 

SM20 3500 Fe B, 1997 
Varian Cary 50 UV-Vis 
Spectrophotometer 

*parameters are not accredited 
 
The results for water samples which were not analyzed immediately the accreditation was provided 
outside the scope of accreditation (parameters HCO3

- and Fe are not accredited). Each measurement for 
individual parameter in the water sample was carried out once, except for parameters HCO3

-, Fe and NH4
+ 

where sometimes second measurement was performed. In this case the final value was the mean value of 
both measurements. The uncertainty for pH is ±0.076, for electrical conductivity is ±1.12 µS/cm, for HCO3

- 
is ±3 %, for NH4

- is ±0.0016 mg/L, and for Fe is ±8 %. Anions and cations measurement uncertainty 
(coverage factor K=2, reliability 95 %) given by the analytical laboratory are calculated regarding the 
formula U=2(0.08LOQ+0.02Cvz), where Cvz is the measured concentration of analyte in sample (Drinking 
water and Sewerage System Public Utility Ljubljana, 2011; Sundaram et al., 2009).  
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Limit of detection (LOD) is defined as the lowest concentration of an analyte in sample that can be 
determined to be statistically different from a blank (99 % confidence). Limit of quantitation (LOQ) is 
defined as the lowest concentration of an analyte in a sample that can be obtained with a specified degree 
of confidence (Wisconsin Department of Natural Resources Laboratory Certification Program, 1996). 
When the result for the measured parameter from the laboratory referred to lower value than the LOD or 
LOQ, it was replaced by its half value and was considered as the final result. This practice is also used by 
the Slovenian Environmental Agency in their reports (EARS, 2011c) according to Ministry of Environment 
and Spatial Planning (2009), and Decree on groundwater status (2009). A number of studies suggest 
what number to use as a substitute for LOD (Croghan and Egeghy, 2003; Verbovšek, 2011).  
 
Analyses of 70 elements were performed ACME Labs - Analytical laboratories Ltd. in Vancouver, Canada 
(ACME Labs, 2007). Water samples were analysed as received directly by Inductively Coupled Plasma 
Mass Spectroscopy (ICP-MS) to determine trace to ultra-trace concentrations of elements. The 
uncertainty calculation has not been done, but for standard, most elements are running anywhere 
between 15 and 30 % at >10 times detection limit (LOD). The analytical precision and accuracy were 
determined as reasonable, which has been proven with random 9 blank and replicate water samples to 
the laboratory. Therefore the reliability of analytical procedures was considered adequate.  
 
 
3.3.2. Groundwater isotope analyses 
 
Isotopic analyses for δ18O and δ2H in groundwater samples were performed at the Hydroisotop GmbH 
laboratory in Schweitenkirchen, Germany, and stable isotope analysis for δ13C-DIC and 3H in groundwater 
at the laboratory of Jožef Stefan Institute laboratories, Slovenia. 
 
The oxygen isotopic composition (δ18O) in water was determined by the analysis of CO2 equilibrated with 
sample water (Epstein and Mayeda, 1953), and the isotopic composition of hydrogen (δ2H) was 
determined using H2 equilibrated with water sample using Pt-catalyst (Prosser and Scrimgeour, 1995). 
The equilibrated gases were measured with dual inlet method on a Finnigan MAT 250 and Finnigan MAT 
251 isotope ratio mass spectrometers (IRMS). All samples were run at least twice where only one result is 
reported in general. Rarely a third measurement is done in order to control procedure, when e.g. another 
sample in the same run shows an unusual result or something happens during measurement. Maximum 
reported analytical uncertainty is ± 0.15 ‰ for δ18O and ± 1.5 ‰, for δ2H, respectively. The accuracy of the 
instrument for 18O is better than 0.03 ‰ and for D better than 1 ‰. All the measurements were carried out 
against laboratory standards that were periodically calibrated against the international isotope water 
standards recommended by IAEA. Values for d-excess were calculated by the laboratory from the δ18O 
and δ2H values in sampled water. Resulting errors of the d-excess and are in the order of ±1.5‰.  
 
The stable isotope composition of dissolved inorganic carbon (δ13C-DIC) was determined in 5 mL water 
sample injected into He-flushed septum vials containing 100 % phosphoric acid (H3PO4) (Capasso et al., 
2003). The released CO2 was analysed using a continuous flow Europa Scientific 20-20 IRMS (isotope 
ratio mass spectrometer) with an ANCA-TG trace gas separation module. Measurement reproducibility is 
better than 0.2 ‰ (Lojen et al., 2009).  
 
For the analysis of the total nitrogen isotope ratio (15N/14N as denoted by the δ15Ntot), the water sample 
was first filtered through 0.45 μm membrane filters. The amount of the sample necessary for the analysis 
was calculated from the concentration of NO3

- in water (determined by IRMS analysis). To isolate the 
nitrate, water was passed through the cation exchange resin (BIO-RAD AG 50W-X8, Hydrogen Form, 
USA) and anion exchange resin (BIO-RAD AG2-X8, Chloride Form, USA) according to the method of 
Silva et al. (2000) as modified by Fukada et. al. (2003). Nitrate was eluted from the anion exchange resin 
using 30 mL 3M HCl. The eluate was neutralized using Ag2O in an ice-cooled water bath. During 
neutralization, Ag2O reacted with eluted HNO3 to produce AgNO3, AgCl and water. Neutralization was 
completed when the pH of the slurry increased to > 5.5. The resulting AgCl precipitate was removed by 
vacuum filtration (Silva et al., 2000), and the solution containing AgNO3 was evaporated at 60°C in the 
dark (Fukada et al., 2003). Aliquots of samples containing 100–200 µg of N were packed into silver 
capsules and analysed for 15N using an Europa 20-20 IRMS connected to the ANCA-SL preparation 
module for solid and liquid samples (Europa Scientific Ltd, Crewe, UK). The standard uncertainty of the 
measurement is < ±0.2 ‰ (Šturm and Lojen, 2011).  
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Since the prevailing nitrogen ion in sampled groundwater was NO3
- (majority of NH4

+ concentrations were 
below LOD), determined recharge areas of sampled groundwater are not affected by the anthropogenic 
influences in a great share, and because the extractions of N in NO3

- is expensive and time consuming, 
the isotopic analyses of groundwater δ15Ntot are referred to total nitrogen Ntot instead of only NO3

- .  
 
The method used for tritium measurements is electrolytic enrichment which consists of primary distillation, 
electrolytic enrichment, and secondary distillation. Before any sample processing, pH and conductivity of 
the sample are measured. The sample is then distilled to remove any impurities that could interfere with 
tritium measurements. After that electrolytic enrichment of 500 mL of distilled samples using sodium 
peroxide (Na2O2) is performed and a second distillation with lead chloride (PbCl2) is carried out in order to 
neutralise the sample. Final water samples, mixed with scintillation cocktail are measured in the liquid 
scintillation spectrometer (LSS) Quantulus (modified after Różański and Gröning, 2004). The minimum 
detectable activity (MDA) for tritium is about 0.40 TU. The standard uncertainty of the measurement is 
between ±3 and ±33 % and depends on several parameters. The average value of measurement 
uncertainties is ±12 % (Kožar Logar and Glavič-Cindro, 2009).  
 
 
3.4. Data analysis techniques 
 
3.4.1. Accuracy and precision 
 
The first step of the water analysis is an assessment of the quality of the data, which is accomplished by 
calculating the ion balance (also known as reaction error). As an aqueous solution is always electrically 
neutral, the sum (in meq/L) of the anions and the cations should always balance. An anion is negatively 
charged group (HCO3

-, Cl-, NO3
-, and SO4

2-) and cation a positively charged group (Ca2+, Mg2+, Na+, K+). 
The level of error in the data is calculated by using the formula (Appelo, 1996; Murray and Wade, 1996):  
 
EB (%)=((Σcations-Σanions)/(Σcations+Σanions))100.                                   (19)  
 
An error of up to ±5 % is tolerable (Appelo and Postma, 2005).  
 
 
3.5. Determinations of recharge areas of sampling locations 
 
For every sampling location its characteristics of recharge area were studied in detail. Recharge areas 
were determined for every sampling location according to the aquifer type and processed in ArcGIS 
Version 9.2 (Esri Inc., 2001) (Appendix 8). In the karstic and fissured aquifers (Fig. 19), the aquifer’s 
lithological and hydrogeological structure, the topology of terrain, active water protection areas, past tracer 
tests results, past hydro-contours, orographic watersheds and borders of groundwater bodies and aquifer 
systems were examined in detail. 
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Figure 19: Recharge areas in karst-fissure aquifers (sampling locations Tominčev izvir and 
Radeščica) 
 
Recharge areas of sampling locations in intergranular aquifers were determined regarding the 
hydrogeological characteristics of the aquifer: groundwater flow velocity and groundwater direction. 
Gradient of groundwater flow was assessed for each sampling location, and a permeability coefficient was 
used, based on past pumping experiments, and past results of hydrogeological modelling made for certain 
groundwater bodies. The groundwater flow was calculated according to Darcy (1856): 
 
Q = - KA(h1-h2)/L.                                                 (20) 
 
Based on calculated groundwater flow velocity, the distance from the outer recharge area border and 
sampling location was determined perpendicular to hydro-contours within 1-year isochrones as the outer 
border of the recharge area (Fig. 20). At sampling locations where groundwater was constantly pumped, 
e.g. at pumping stations, the recharge area was limited with an angle of water-solute distribution due to 
processes of distribution in the aquifer; 45°angle because of greater influence on groundwater flow due to 
pumping and 30° angle at sampling locations where there was no previous pumping from the object, e.g. 
from piezometer, borehole or well. This value was taken as a rough approximation while in practice this 
angle is much smaller. Additional information was provided by hydrogeological modelling of some 
groundwater bodies which were done in the past (Rules on determining water bodies of groundwater, 
2005; Prestor et al., 2006).  
 
The recharge areas of sampling locations in aquifers with minor groundwater reservoirs (Fig. 21), e.i. 
poorly permeable or impermeable rocks, were determined mostly according to the terrain topography.  
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Figure 20: Recharge area in intergranular 
aquifer (sampling location Šempeter 0840) 
 

Figure 21: Recharge area in aquifers with minor 
groundwater reservoirs (sampling location 
Framski slap) 

Detail information on recharge areas determination for particular sampling locations is found in Appendix 
9.  
 
 
3.6. Spatial analysis and generalizations 
 
3.6.1. Spatial analysis 
 
Spatial analysis of mean altitudes and climatic factors, like mean air temperature and mean amount of 
precipitation, were preceded for sampling locations recharge areas in ArcGIS.  
 
Mean altitudes for sampling locations recharge areas were calculated in ArcGIS Version 9.2 as spatial 
analysis based on raster layer of Slovenian Digital Elevation Model of the cell size 12.5 x 12.5 m (GURS, 
2005). Recharge area of sampling location DEV-1 Desenci could not be estimated and therefore spatial 
analysis was not made. For the mean altitude of recharge area the Z coordinate was considered.  
 
For the mean air temperature of the recharge area the shape layer The average annual air temperature 
1971-2000 with 1-2 km resolution was used (EARS, 2011a). The original layer has 8 classes (from -2°C to 
14°C) where each class has a 2°C range, e.g. 2-4°C. In the shape attribute table a new column was 
added where we calculated the average temperature value from each class, e.g. if the class has 2-4°C we 
considered 3°C. In ArcGIS we did the spatial analysis of the temperatures regarding the surface share of 
recharge areas and calculated the share of each temperature class on recharge area, e.g. 8°C is 45 % of 
whole recharge area and 55 % has 9°C. Then this ratio was weighted to a single temperature.  
 
For the mean amount of precipitation in the recharge area the shape layer The average annual 
precipitation corrected for 1971–2000 with 1-2 km resolution was used (EARS, 2011b). It has 13 classes 
(800 – 4000 mm) with different mutual ranges (at beginning 100 mm, later up to 800 mm). This analysis is 
preceded as the mean temperature of recharge area. 
 
Distances from the seaside (Lucija Portorož) were calculated with the Euclidean distance in ArcGIS based 
on the raster layer of Slovenian Digital Elevation Model of the 12.5 x 12.5 m cell size (GURS, 2005), and 
was proceed as the calculation for the mean altitudes of recharge areas. 
 
 
3.6.2. Generalizations 
 
Lithological and lithostratigraphic units 
 
The surface lithological and lithostratigraphic structure of the recharge areas was determined based on 
the digital geological map of Slovenia (Appendix 2) at the 1:250,000 scale (Buser, 2010). Due to 
consideravle geological diversity a simplification has been made. 114 lithological units (Appendix 2) were 
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grouped into 14 lithological units (Tab. 4). Lithostratigraphic units were grouped based on the age of their 
formation and rock type into 28 lithostratigraphic subgroups.  
 
Table 4: Simplified lithological classification of typical Slovenian rock types 
Basic rock type classification Lithological unit 

 
 
 
 
Clastic sedimentary rocks 

flysch rocks* 

clay* 

gravel and sand* 

gravel, sand and clay* 

rubble and morena 

conglomerate and breccia 

marlstone 

shale and sandstone* 

Carbonate rocks limestone prevailing* 

dolomite prevailing* 

carbonates with clastics* 

clastics with carbonates 

Igneous and metamorphic rocks igneous rocks* 

metamorphic rocks* 

 
Not all lithological and lithostratigraphic units are included in this study due to the chosen network pattern. 
Lithological (total 10) and lithostratographic units (total 14) marked with asterisk (Tabs. 4 and 5) are 
observed in the recharge areas of chosen sampling locations and are therefore solely used in the future 
tables and calculations.   
 
Based on the new generalization and grouping the surface shares of individual lithological and 
lithostratographic units were calculated in ArcGIS, where the shares of the same lithological (and 
lithostratigraphic) units were combined in one for each recharge area. The surface areas (m2) of recharge 
areas and all lithological (and lithostratigraphic) units within the polygon were calculated. In Excel the 
additional calculations were made where the prevailing share of one lithological (lithostratigraphic) unit 
was determined as the representative lithological (lithostratigraphic) unit of certain recharge area. In most 
cases the prevailing lithological (lithostratigraphic) unit was determined when prevailing lithological unit 
was above 75 %. Units marked with asterisk are observed in the recharge areas of sampling locations.  
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Table 5: Lithostratigraphic specification 

  Period Epoch Lithostratigraphic unit 

C
en

o
zo

ic
 

Q
u

ar
te

n
a

ry
 

  

Quaternary clastics (medium- and coarse-grained)* 

Quaternaryclay (fine-grained) 

T
e

rt
ia

ry
 

N
e

o
g

e
n

e 

Pliocene 

Pliocene clastics* 

Pliocene igneous rocks 

Miocene 

Miocene clastics* 

Lithothamnium  limestone* 

P
a

le
o

g
e

n
e 

Oligocene 

Oligocene clay “sivica”* 

Oligocene clastics 

Oligocene igneous rocks* 

Eocene 

Eocene clastics 

Eocene flysch rocks* 

Eocene carbonates 

Paleocene 

Paleocene flysch rocks 

Paleocene carbonates 

M
es

o
zo

ic
 

  Mesozoic carbonates 

C
re

ta
ce

o
u

s 

  

Cretaceous clastic 

Cretaceous carbonates* 

Cretaceous flysch rocks 

Ju
ra

ss
ic

 

  

Jurassic carbonates* 

Jurassic clastics 

T
ri

a
ss

ic
 

  

Triassic carbonates* 

Triassic clastics 

Middle Ladinian igneous rocks* 

P
a

le
o

zo
ic

 P
e

rm
ia

n
 

Middle Val Gardena layers* 

  

Permian carbonates 

Carboniferous-Permian beds  * 

D
e

vo
n

ia
n

 

  

Devonian carbonates 

  
old Paleozoic rocks* 
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Aquifer porosity type 
 
Based on the hydrogeological properties of the aquifer in which the groundwater was sampled and its 
recharge area, the aquifer porosity type has been classified into 5 groups (Tab. 6). 
 
Table 6: Types of aquifer porosity 

Type of porosity 
intergranular porosity 
fractured porosity 
fractured and karstic porosity 
karstic and fractured porosity 
mixed porosity (karstic, fractured, intergranular) 
 
Land cover/use 
 
For the purposes of this study two land cover/use digital databases were used: CORINE Land Cover 
(GURS, 1998), and Actual agricultural and forest land usage (2011). Both land use data are used for 
specification of natural and anthropogenic influence on the recharge area of sampled groundwater. The 
focus regarding the natural influence is the type of vegetation in the recharge area, and regarding the 
anthropogenic influence the focus is on the urbanization and industry, waste landfill, sewage system 
leakage, areas where the use of fertilizers and pesticides could be present (fields, meadows, orchards, 
vineyards…) which could also provide the information of possible source of fertilizers or livestock.  
 
The CORINE Land Cover Slovenia shape layer has been used in order to get the information about the 
type of land use on the individual recharge area. CORINE land cover units marked with asterisk (total 10 
categories out of 33) (Tab. 7) are observed in the recharge areas of sampling locations and are therefore 
going solely to be used in the future tables and calculations. The share and the prevailing CORINE Land 
Cover use type within the recharge area has been determined and calculated in the same way as the 
previously described procedure for lithological and lithostratigraphic share.  
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Table 7: List of CORINE Land Cover use units 
Description 

Airports 

Bare rocks* 
Beaches, dunes, sands 

Broad-leaved forest* 

Complex cultivation patterns* 

Coniferous forest* 
Construction sites 

Continuous urban fabric 
Discontinuous urban fabric 

Dump sites 

Fruit trees and berry plantations 
Glaciers and perpetual snow 

Green urban areas 

Industrial or commercial units* 
Inland marshes 

Land principally occupied by agriculture, with significant areas of natural vegetation* 

Mineral extraction sites 

Mixed forest* 
Moors and heathland* 

Natural grasslands* 
Non-irrigated arable land* 
Pastures 

Port areas 
Road and rail networks and associated land 

Salines 

Salt marshes 

Sclerophyllous vegetation 
Sparsely vegetated areas 

Sport and leisure facilities 

Transitional woodland-shrub 
Vineyards 

Water bodies 
Water courses 

 
Land use data presents a complex relation between natural and socio-economic factors. Spatial 
distribution on surface activities is presented as Actual agricultural and forest land usage Map 1:5,000 
(MKGP) which is determined by Rules on evidence of actual agricultural and forestal land use (Official 
Gazette of RS 90/2006, 9/2008, 45/2008-ZKme-1, 122/2008). 25 classes were generalized into 12 
categories (Tab. 8) and the share of individual groups was calculated within every recharge area. The 
share and the prevailing as Actual agricultural and forest land usage type within the recharge area has 
been determined and calculated in the same way as previously described procedure for lithological and 
lithistratiographic share.  
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Table 8: List of generalized Actual agricultural and forest land usage units 
  Category Land use type 

T
yp

es
 o

f a
g

ric
u

ltu
ra

l 
la

nd
 u

se
  

1 Arable land, Hop fields, Other permanent crops on arable land 

2 
Green houses, Vineyards, Nursery, Intensive Orchards, Extensive Orchards, Olive 
groves, Other permanent crops, Meadows and pastures, Swampy meadows 

3 
Owergrown areas, Forest plantations, Riparian overgrowth and forest hedges, 
Forest trees on agricultural land 

4 Uncultivated agriculture land 

 N
on

-a
gr

ic
u

ltu
ra

l u
se

s 5 Forest 

6 Built-up areas and related surfaces 
7 Swamps 

8 Reeds 

9 Other marshy areas 
10 Dried open areas with special vegetation 

11 Open areas with little or no vegetation 
12 Waters 

 
Additional generalization has been made based on first grouping, where Actual agricultural and forest land 
usage types have been grouped into 4 subgroups (Tab. 9). The share and the prevailing land use type 
within the recharge area has been determined and calculated in the same way as previously described 
procedure for lithological share. 
 
Table 9: List of additional generalized Actual agricultural and forest land usage units 

No. Actual source Actual agricultural and forest land usage type Category 

1 anthropogenic arable land, hop fields; other permanent crops on 
arable land 

areas of intense use of 
nutrients and plant 
protection products 

2 anthropogenic

green houses, vineyards, nursery, intensive 
orchards, extensive orchards, olive groves, other 
permanent crops, meadows and pastures, swampy 
meadows 

areas of less intense use of 
nutrients and plant 
protection products 

3 natural 

owergrown areas, forest plantations, riparian 
owergrowth and forest hedges, forest trees on 
agricultural land; uncultivated agriculture land; 
forest; swamps; reeds; other marshy areas;  dried 
open areas with special vegetation; open areas 
with little or no vegetation  

forest   

4 anthropogenic built-up areas and related surfaces     urban areas 
 
Detailed description on all 87 sampling locations according to hydrogeological, geological, CORINE Land 
cover, and Actual agricultural and forest land usage in their recharge areas is found in the Appendix 10. 
 
 
3.6.3. Methodologies used for data evaluation and presentation 
 

Methodology for determination of the typical groundwater value  

From each sampling location groundwater was sampled two times, except at two sampling locations (Pasji 
rep and Potok pri dvorcu Visoko) it was sampled three times. The main purpose of repeating sampling 
twice at each sampling location was to obtain a more typical typical groundwater value of measured 
parameters at individual sampling location. This methodology has been verified on two samplings 
locations, where long term observations of δ18O in groundwater were performed at the Krka spring (karstic 
aquifer) and LMV-1 (intergranular aquifer). Based on those graphs it is possible to conclude that two 
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samplings at a certain location can provide a quite representative (typical) mean of measured δ18O in 
groundwater. 
The focus of this study was not to monitor seasonal variations, but to obtain the most typical values of 
measured parameter in groundwater in the recharge areas of the most representative lithological and 
lithostratigraphic units found in Slovenia. Typical values of parameters were calculated as a mean value of 
two measurements.  
 
Methodology for determination of groundwater natural background level (NBL) 
 
The natural chemical background level (NBL) in groundwater was determined for the parameters which 
sources are mostly of anthropogenic origin. In order to determine the natural background level for 
observed groundwater parameter, the share of anthropogenic influence in the recharge areas of sampled 
groundwater were estimated. This has been provided by the generalization of the Actual agricultural and 
forest land usage (Table 9). The comparison between the shares of anthropogenic sources in the 
recharge areas of sampled groundwater, and the concentration of observed parameters, provides the 
information of the occurrence of parameter in the groundwater. The share of anthropogenic influence up 
to 20 % in the recharge areas was estimated as the natural recharge areas. Therefore the mean values of 
measured parameters in groundwater which have up to 20 % of anthropogenic influences in the recharge 
areas were considered as the natural chemical background level of observed parameter. 
 
Hydrochemical thematic maps 
 
For each observed parameter a hydrochemical thematic map was produced. The mean (typical) value of 
both (seasonal) samplings was considered for each sampling location. The mean value of a certain 
groundwater parameter for individual groundwater body was calculated on the basis of the obtained 
datasets for sampling locations included in a particular groundwater body. Mean concentrations of 
groundwater bodies do not present the actual concentrations for the whole groundwater body. Instead 
they serve as reference values which provide the information on possible trends in particular areas, and 
alert on the significant deviations between concentrations at sampling locations and groundwater body. 
The scales of the maps are determined by the frequency distributions of observed concentrations and 
personal choice.  
 
System for result interpretation 
 
The data from analyses were examined graphically and scrutinized for trends and clustering together with 
basic geologic and hydrologic data, and land-use information in order to indicate likely sources of 
observed parameter in sampled groundwater. 
Presentation of results and the interpretation of studied groundwater parameters follow the similar pattern 
of description: 
 
- descriptive statistics of the observed parameter 
- typical groundwater values of observed parameter according to major rock type, lithological 

classification (Table 4) and lithostratigraphic classification (Table 5)  
- typical groundwater values of observed parameter according to porosity type (Table 6) 
- typical groundwater values of observed parameter according to land cover/use: CORINE Land Cover 

(Table 7) and Actual agricultural and forest land usage (Table 9) 
- typical groundwater values of observed parameter according to the object type 
- hydrochemical thematic map 
- determination of natural background level (NBL) of the observed parameter  
 
With respect to determination of typical groundwater values of observed parameters according to object 
type, the correlations with observed parameters are not statistically significant. They are apparent and not 
real. Instead they serve as possible indicators for climatic conditions, e.g. outgassing processes (CO2) 
observed in waters samples as surface water.  
 
All tables with exact values of concentrations from box and whisker plots for every observed parameter 
are found in Appendix 13 (13A-13S). For groundwater 3H, δ18O, δ2H, δ15Ntot, and d-excess, the plots for 
typical groundwater values according to some generalizations (geology or land use) are not presented 
because their isotopic composition (values) are not affected by it. 
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4. RESULTS AND DISCUSION 
 
Interpretation of the occurrence and distribution of measured chemical and isotopic composition of 
groundwater has been carried out with the help of statistical data processing, and topographic, geological, 
and land use data. Interpretation has been upgraded with the existing geochemical and hydraulic data of 
aquifers, and by field observations.  
 
 
4.1. Statistics and data analysis 
 
4.1.1. Accuracy and precision 
 
The charge balance calculations for all analyzed groundwater samples could not be calculated. Namely 
groundwater samples where the concentration of all major ions was above LOD the ion balance was 
within the error tolerance. Where at least one of measured major ion concentration in measured 
groundwater sample was below the LOD the ion balance could not be calculated, since its original value 
was replaced by the half of its LOD value. Additionally, during our 3-year sampling the laboratory changed 
in 2009 the limit of detection for K+ and Cl- concentrations.  

 
 

4.1.2. Statistical methods 
 
The dataset used for statistical analysis is a matrix of measured properties176 water samples taken from 
87 sampling sites (Appendix 11). Groundwater at 85 sampling locations was sampled twice, and at 2 
sampling locations it was sampled three times. Dataset includes analysis for 91 variables: physico-
chemical parameters, major and secondary major ions, trace constituents, and isotopic composition of 
stable and radioactive isotopes. 
 
A number of parameters have been eliminated from further analysis:  
- concentration of measured parameters below LOD (Bi, Eu, Hf, In, Nb, Pd, Pt, Sm, Ta, Tb, Ti, Tm) 
- in more than ⅓ of water samples the concentration of measured parameters was below  LOD (NH4

+, 
Ag, As, Au, B, Be, Cd, Ce, Co, Cr, Cs, Dy, Er, Fe, Ga, Gd, Ge, Hg, Ho, La, Lu, Mo, Nd, Ni, Pb, Pr, Re, 
Rh, Ru, Sb, Sc, Se, Sn, Te, Th, Tl, V, W, Yb, and Zr), 

- were excluded from the laboratory analyses in 2010 (Ir and Os) 
 

Finally, 176 groundwater samples and following parameters were considered for this study: T, pH, EC, 
δ18O, δ2H, d-exess, δ13C-DIC, δ15Ntot, 

3H, Ca2+, Mg2+, Na+, K+, Cl-, HCO3
-, NO3

-, SO4
2-, Si, and Mn.  

 
 
4.1.2.1. Descriptive statistics 
 
Descriptive statistics are used to describe the basic information of studied dataset. The mean (X), 
geometric mean (XG), median (Md), minimum (Min), maximum (Max), standard deviation (S), standard 
error of mean (SX) and coefficient of variation (CV) were determined for observed variables. Various tests 
were performed in order to evaluate the normality of data distribution: Kolmogorov-Smirnov test (K-S), 
Shapiro-Wilk’s test (W), and Chi-square test (χ2) (Appendix 12).  
 
 
Data transformation 
 
Since the distribution of most observed variables is positively skewed and their frequency diagrams do not 
follow normal distribution the logarithmic transformation (log10(x+100)) was performed in order to achieve 
normality of observed data (Appenedix 12).  
 
On the basis of the normality tests results and by visual inspection of histograms for all measured 
parameters in groundwater, the normal distribution (normality) was assumed for raw parameters of T, EC, 
δ18O, δ2H, d-excess, Ca2+, and HCO3

-, as their curve is approaching normal distribution. For all other 
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variables the logarithms of contents was considered normally distributed. Table 10 summarizes the 
descriptive statistics. 
 
Table 10: Descriptive statistics of observed variables 
Parameter Dis n X Md XG Min Max S Sx CV A E χ2 d p W p 

T N 174 10.7 10.6 10.3 5.2 18.2 2.9 0.2 27.4 0.26 -0.42 0.94 0.06 < 0.20 0.98 < 0.20 

pH Log 175 7.60 7.64 7.59 6.40 8.30 0.37 0.03 4.85 -0.91 1.13 7.78 0.09 < 0.10 0.95  < 0.01 

EC N 175 368 366 319 28 882 173 13 47 0.50 0.42 1.80 0.07 > 0.20 0.98 < 0.10 

δ18O N 174 -9.25 -9.23 
 

-11.43 -6.49 0.94 0.07 -10.14 0.25 0.15 3.42 0.06 > 0.20 0.99 < 0.10 

δ2H N 174 -61.6 -62.5 
 

-78.6 -40.6 7.5 0.6 -12.1 0.44 0.25 4.80 0.07 > 0.20 0.98 < 0.05 

d-excess N 174 12.4 12.4 12.2 6.0 21.4 2.0 0.2 16.4 0.53 2.33 0.75 0.06 > 0.20 0.97 < 0.10 

δ13C-DIC Log 173 -12.15 -12.92 
 

-20.60 -0.70 3.71 0.28 -30.52 0.92 1.65 53.24 0.15 < 0.01 0.90 < 0.01 

δ15Ntot Log 133 4.24 3.65  -2.80 18.60 4.14 0.36 97.76 0.84 0.86 0.88 0.07 > 0.20 0.95 < 0.10 

3H Log 172 6.14 6.01 5.80 0.48 11.77 1.69 0.13 27.51 -0.19 2.17 6.73 0.08 > 0.20 0.95 < 0.01 

Ca2+ N 175 60 58 49 2 152 30 2 50 0.52 0.65 2.76 0.07 > 0.20 0.97 < 0.05 

Mg2+ Log 175 13.0 9.5 9.0 1.0 42.0 10.1 0.8 78.2 0.91 -0.19 28.08 0.18 < 0.01 0.89 < 0.01 

Na+ Log 175 3.7 2.0 1.9 0.1 36.0 5.3 0.4 143.4 3.29 12.67 112.47 0.25 < 0.01 0.60 < 0.01 

K+ Log 175 0.82 0.44 0.41 0.04 12.00 1.60 0.12 194.99 5.07 28.09 268.45 0.31 < 0.01 0.41 < 0.01 

HCO3- N 175 235 234 201 19 575 110 8 47 0.16 -0.28 1.11 0.05 > 0.20 0.98 > 0.20 

Cl- Log 175 5.00 2.34 2.35 0.12 36.70 7.10 0.54 142.08 2.55 6.40 90.44 0.27 < 0.01 0.64 < 0.01 

NO3- Log 175 9.56 4.47 4.94 0.33 92.56 15.87 1.20 165.92 3.51 12.96 283.67 0.34 < 0.01 0.51 < 0.01 

SO42- Log 175 10.06 5.66 6.37 0.75 67.40 11.49 0.87 114.23 2.50 6.96 86.73 0.24 < 0.01 0.69 < 0.01 

Si Log 174 3.19 1.86 1.98 0.17 13.44 3.03 0.23 0.95 1.39 1.34 12.53 0.18 < 0.01 0.83 < 0.01 

Mn Log 174 0.82 0.23 0.26 0.03 22.11 2.55 0.19 309.02 5.89 38.49 369.22 0.39 < 0.01 0.29 < 0.01 

 
Dis. – distribution (N – normal, Log – lognormal); Min – minimum; Max – maximum; Md – median; X – 
mean, S – standard deviation; Sx – standard error of mean; CV – coefficient of variation (%) 
 
 
4.1.2.2. Multivariate statistical methods 
 
Correlations 
 
For estimating correlation between observed variables the nonparametric Spearman's rank correlation 
(Spearman’s rho) statistical test was used (Tab. 11). The correlation coefficients (rs) are significant at 
p<0.05. 
 
Strong correlation coefficients (rs>0.70) were observed between δ18O and δD (rs=0.96), EC and Ca2+ 

(rs =0.89), HCO3
- and Ca2+ (rs=0.86), EC and HCO3

- (rs=0.82), Na+ and K+ (rs=0.82), Si and Na+ (rs=0.81), 
Na+ and Cl- (rs=0.81), EC and Mg2+ (rs=0.79), HCO3

- and Mg2+ (rs=0.76), mean amount of precipitation and 
Si (rs=-0.76), NO3

- and Cl- (rs=0.76), K+ and δ15Ntot (rs=0.73), Br an Cl- (rs=0.73), Cl- and δ15Ntot (rs=0.72), Si 
and K+ (rs=0.71), Br and Na+ (rs=0.71), and Cl- and K+ (0.71). 
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Table 11: Spearman rank order correlations (strong correlations are marked in bold and are underlined; marked in red correlations are 
significant at the 95 % confidence level)  
 

  T pH EC δ18O δ2H δ13C-DIC δ15Ntot
3H Ca2+ Mg2+ Na+ K+ HCO3

- Cl- NO3
- SO4

2- Si Br Mn 
Mean 

amount of 
precipitation 

T 1.00 

pH -0.43 1.00 

EC 0.54 -0.51 1.00 

δ18O 0.30 -0.01 0.26 1.00 

δ2H 0.21 0.11 0.15 0.96 1.00 

δ13C-DIC -0.30 0.58 -0.22 0.12 0.21 1.00 

δ15Ntot 0.68 -0.49 0.63 0.17 0.05 -0.39 1.00 
3H -0.09 -0.10 0.12 -0.26 -0.30 -0.08 0.11 1.00 

Ca2+ 0.44 -0.46 0.89 0.33 0.23 -0.21 0.48 0.12 1.00 

Mg2+   0.44 -0.37 0.79 0.03 -0.06 -0.06 0.51 0.08 0.51 1.00 

Na+  0.68 -0.52 0.41 0.32 0.20 -0.45 0.68 -0.05 0.35 0.21 1.00 

K+   0.58 -0.47 0.47 0.21 0.10 -0.41 0.73 0.03 0.36 0.28 0.82 1.00 

HCO3
-  0.45 -0.39 0.92 0.21 0.11 -0.17 0.50 0.10 0.86 0.76 0.26 0.34 1.00 

Cl-  0.63 -0.46 0.69 0.45 0.33 -0.32 0.72 -0.03 0.62 0.46 0.81 0.71 0.55 1.00 

NO3
- 0.39 -0.41 0.69 0.29 0.21 -0.30 0.57 0.13 0.60 0.47 0.51 0.58 0.54 0.76 1.00 

SO4
2-  0.56 -0.35 0.58 0.27 0.19 -0.23 0.51 0.19 0.52 0.37 0.61 0.58 0.43 0.58 0.55 1.00 

Si 0.58 -0.61 0.28 0.02 -0.09 -0.57 0.60 0.07 0.20 0.14 0.81 0.71 0.14 0.49 0.32 0.56 1.00 

Br 0.56 -0.62 0.59 0.31 0.20 -0.42 0.60 0.06 0.49 0.38 0.71 0.61 0.43 0.73 0.61 0.54 0.64 1.00 

Mn  0.43 -0.22 0.19 0.28 0.23 -0.07 0.31 -0.04 0.10 0.15 0.44 0.41 0.10 0.38 0.12 0.29 0.37 0.37 1.00 

Mean amount 
of precipitation 

-0.56 0.66 -0.57 0.13 0.26 0.52 -0.60 -0.28 -0.44 -0.49 -0.57 -0.59 -0.45 -0.50 -0.49 -0.64 -0.76 -0.64 -0.30 1.00 
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Moderate correlation coefficients (0.7>rs>0.5) were observed between EC and Cl- (rs=0.69), EC and NO3
- 

(rs=0.69), T and δ15Ntot (rs=0.68), δ15Ntot and Na+ (rs=0.68), T and Na+ (rs=0.68), Si and Br (rs=0.64), mean 
amount of precipitation and Br (rs=0.64), T and Cl- (rs=0.63), EC and δ15Ntot and EC(rs=0.63), Ca2+ and Cl- 
(rs=0.62), Na+ and SO4

2- (rs=0.61), NO3
- and Br (rs=0.61), mean amount of precipitation and δ15Ntot 

(rs=0.60), δ15Ntot and Si (rs=0.60), δ15Ntot and Br (rs=0.60), and Ca2+ and NO3
- (rs=0.60). 

 
Based on the knowledge from literature a few major groups could be extracted; e.g. a group that is linked 
to dissolution of carbonate rocks (EC, HCO3

-, Ca2+, and Mg2+), a group that associates δ18O and δ2H, a 
group that is linked to silicate weathering (Si, Na+ and K+), and a group that might reflect the 
anthropogenic influence on the groundwater (Na+, K+, NO3

-, Cl-, and SO4
2-), and others.  

It needs to be pointed out that some correlations are not real (are apparent), and that their interpretation 
needs to be considered in aspects of geochemical reaction mechanisms.     
 
Factor analysis (FA)  
 
For factor analysis the data has been standardized to remove the effects of using different units in 
variables. The standardized values have a mean value of zero and standard deviation of unity. A total of 
176 observations and 19 standardized variables were used for this analysis. With the factor analysis 
distribution is decreased to four factors (F1 to F4) after varimax orthogonal rotation. Four factors are 
connected regarding to geochemical similarities and they account for 76.25 % of total variance. The 
rotated loadings, eigenvalues, and percentage of variance are given in the Table 12. The total number of 
factors was chosen according to eigenvalues greater than 1 (scatterplot in the Appnedix 12), % of total 
variances explained (more than 75 %), and knowledge of geochemistry.  
 
Table 12: Variables and factor loadings after varimax rotation 

  F1 F2 F3 F4 Comm 

Cl- 0.90 0.17 0.24 0.03 95.87 

Na+ 0.89 0.17 0.16 0.15 97.38 

Br 0.84 0.24 0.25 0.17 87.38 

K+ 0.82 0.03 0.10 0.00 90.43 

SO4
2- 0.80 0.09 0.23 -0.09 75.18 

NO3
- 0.75 0.02 0.30 -0.10 79.57 

Si 0.64 -0.14 0.03 0.65 84.22 

pH -0.62 0.28 -0.17 -0.48 77.94 

δ15Ntot 0.47 -0.03 0.45 0.26 58.39 

EC 0.43 0.12 0.86 0.01 98.17 

T 0.42 0.22 0.56 0.43 69.22 
3H 0.37 -0.40 0.05 -0.62 52.40 

Ca2+ 0.36 0.25 0.79 -0.08 97.46 

δ13C-DIC -0.30 0.14 -0.42 -0.42 66.46 

δ18O 0.21 0.93 0.12 0.06 96.25 

δ2H 0.12 0.96 0.01 0.01 96.13 

HCO3
- 0.07 0.10 0.96 -0.02 94.41 

Mg2+ 0.07 -0.19 0.80 0.11 93.92 

Mn -0.02 0.04 0.03 0.78 51.08 

eigen. 8.15 2.25 2.19 1.90  

Var. 42.92 11.82 11.51 9.99 76.25 

 
F1…F4 – factor loadings; eigen – eigenvalue; Var - % total variance; Com – communalities in %.  
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Subgroups in the second group join at about 50 %, and second and third group join on 70 %. Two major 
clusters are joined to each other at 100 %. 
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Figure 24: Cluster analysis dendrogram (n=176, 17 selected elements) 
 
According to findings provided by the statistical data processing, occurrence and distribution in 
groundwater, the following section covers the interpretation of groundwater isotope 3H, isotopic 
composition of δ18O, δD, δ13C-DIC, and δ15Ntot, physico-chemical parameters (pH and EC), major ions 
(Ca2+, Mg2+, Na+, K+, HCO3

-, NO3
-, Cl-, SO4

2-, and Si), secondary major ions (Fe and NH4
+), and trace 

constituents (Br, Cr, and Mn). Chosen parameters have proven to be extremely important according to the 
interpretation of groundwater processes in the aquifers.  
 
 
4.2. Age of Slovenian groundwaters 
 
4.2.1. Tritium in Slovenian groundwaters 
 
Descriptive statistics of groundwater 3H 
 
Groundwater 3H activity varies between 0.45 TU and 11.77 TU, with mean value of 6.14 TU and median 
6.01 TU (Tab. 13). Groundwater 3H values are not normally distributed (Fig. 25) and values lower than 
3.27 TU (VP-1 Prosenjakovci, Grad-1 Grad, DEV-1 Desenci, Ilirska Bistrica) and above 9.34 TU (Šumec, 
Mazej, Vt-1 Tinsko, Gradišče, Šumec, Trgovina Vurberk, TR-1 Trebelno) present outliers (Fig.26). The 
standard uncertainty of the measurement is between ±3 and ±33 %, and mean value of measurement 
uncertainties is ±12 % (Kožar Logar and Glavič-Cindro, 2009).   
 
Table 13: Descriptive statistics of groundwater 3H activity 

Parameter n X Md Min Max S 
3H (TU) 172 6.14 6.01 0.48 11.77 1.69 
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Based on the 3H activity in sampled groundwater it has been categorised as: 
 
- old groundwater with natural pre-bomb tritium content (<2.00 TU), 
- young (modern) groundwater (2.00 – 8.00 TU), which is up to 10 years old, and  
- sub-modern groundwater (>8.00 TU) which is older water (sub-modern) (up to 50 years) and includes 

some “nuclear bomb tritium”.  
 

During sampling mostly groundwater which is closely related to recent precipitation events has been 
sampled (Tab. 14, Fig. 29). This has been verified by the 3H activities of sampled groundwater and recent 
precipitation in Slovenia. 3H activity of precipitation in Ljubljana (2002-2006) has a mean 3H activity of 
about 9.0 TU (Fig. 25) (Vreča et al., 2011) and is stil decreasing with more recent values of 5.0—8.0 TU 
(Logar Kožar, personal communication, 2013). Older groundwater (<0.5 TU) from deeper aquifers from 
NE part of the country is possibly younger than 1,000 years (Szőcs et al., 2013). Since the 3H activities in 
sampled groundwater (6.20 TU) are close to values measured in precipitation, it is expected that most of 
sampled groundwater is quite young.     
 
Table 14: Groundwater age 

Groundwater age n X Md Min Max S 
modern groundwater (< 10 years) 165 6.24 6.04 2.21 10.14 1.37 
old groundwater (50 to 1,000 years) 5 0.98 0.98 0.48 1.44 0.38 
submodern groundwater with residence time up to 
50 years 

2 10.88 10.88 10.00 11.77 1.25 
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A = recent groundwater (n=165) 
B = old groundwater (n=5) 
C = groundwater up to 50 years old 
(n=2) 

Figure 29: Box and whisker plots for groundwater 3H activity according to groundwater age  
 
Figure 30 presents the correlation between δ18O and δ2H where older groundwater samples are plotted 
closely as they are depleted in 18O and 2H.    
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Rock type  
 
Groundwater is mostly depleted in 18O in the recharge areas of igneous and metamorphic rocks (and in a 
few sampling locations in the carbonate rocks) (Fig. 33, Appendix 13A) which is significantly depleted in 
18O compared to groundwater in recharge areas of clastic sedimentary rocks and carbonates. 
Groundwater sampled in the high mountain regions receives isotopically depleted precipitation compared 
to groundwater in lowlands which recharge areas are in clastic sedimentary and carbonate rocks. 
Enriched in 18O is groundwater sampled in clastic sedimentary rocks, located in vicinity of the seaside.  
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A = clastic sedimentary rocks (n=52) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic rocks 
(n=12) 

Figure 33: Box and whisker plots for groundwater δ18O values in the recharge area of major rock 
types 
 
Groundwater in the recharge areas with Eocene flysch rocks (Figs. 34 and 35, Appendix 13A) is 
significantly enriched (p<0.05) in 18O compared to groundwater with recharge areas with Permian Val 
Gardena layers, Jurassic carbonates, Ladinian igneous rocks, Miocene Lithothamnium limestone, 
Oligocene igneous rocks, Pliocene clastics, Oligocene clay “sivica”, old Paleozoic rocks, and Triassic 
carbonates. This is due to proximity of the Adriatic Sea and low elevation landscape. Groundwater 
sampled at higher altitudes (old Paleozoic rocks, and Triassic and Cretaceous carbonates) is depleted in 
18O due to receiving isotopically depleted precipitation. Groundwater with recharge areas in old Paleozoic 
metamorphic rocks is significantly depleted (p<0.05) in 18O compared to groundwater with recharge areas 
with Cretaceous carbonates, Quaternary clastics (medium- and coarse-grained), Miocene clastics, and 
Carboniferous-Permian beds. 
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E = shale and sandstone (n=6) 
F = limestone prevailing (n=74) 
G = dolomite prevailing (n=30) 
H = carbonates with clastics (n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 

Figure 34: Box and whisker plots for groundwater δ18O values in the recharge area of prevailing 
lithological unit 
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A = old Paleozoic rocks (n=4) 
B = Carboniferous-Permian beds (n=4) 
C = Permian Val Gardena layers (n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates (n=28) 
H = Eocene flysch rocks (n=6) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
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(n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=8) 
N = Quaternary clastics (medium- and 
coarse-grained) (n=26) 

Figure 35: Box and whisker plots for groundwater δ18O values in the recharge area of prevailing 
lithostratigraphic unit 
 
Since there is a relationship between the altitude and the mean air temperature, and groundwater 3H 
activity confirmed the young groundwater age, a correlation between the groundwater isotopic 
composition and the mean air temperature is expected. For definition of the mean air temperature of the 
sampling location recharge area, a map of the spatial distribution of air temperatures with a resolution of 
1–2 km was used (The average annual air temperature 1971–2000). The mean annual temperature of 
each sampling location has been estimated in ArcGIS according to its estimated recharge area. There is a 
positive correlation between δ18O in groundwater and the mean annual temperature of the recharge area 
(rs = 0.56, p < 0.001) (Fig. 36), as it has been reported by other authors (Wassenaar et al., 2009). The 
mean groundwater δ18O values from colder areas are more depleted in 18O than those in lowlands as a 
consequence of the isotope altitude effect. The isotope temperature gradient is estimated at around 
0.25 ‰ δ18O/°C, which coincides with estimated temperature gradients in precipitation of 0.11 ‰ δ18O/°C 
at the Portorož Airport station and 0.30 ‰ δ18O/°C at Ljubljana station (Vreča et al., 2006a). 
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A = pumping station (n=36) 
B = borehole (n=10) 
C = private well (n=8) 
D = spring capture (n=44) 
E = spring (n=58) 
F = surface water (n=18) 

Figure 39: Box and whisker plots for groundwater δ18O values according to sampling object type 
 
Spatial distribution of groundwater δ18O  
 
The most enriched in 18O is groundwater near the coast with low elevation in the recharge areas (Fig. 41, 
Appendix 11A). The inner continental waters receive 18O depleted precipitation, as well as groundwater 
sampled at high elevations in the N-NW, N, and N-NE parts of the country (Karavanke Mts,. Alps region, 
and Pohorje Mt.).  

 
Figure 40: Spatial distribution of groundwater δ18O  
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4.3.2. Groundwater deuterium isotopic composition (δ2H) 
 
Descriptive statistics of groundwater δ2H  
 
Groundwater δ2H varies between -78.6‰ and -62.5‰, with mean value of -61.6‰ and median value of 
-62.5‰ (Tab. 16). Isotope histograms show that groundwater isotope data of δ2H is close to normally 
distributed (Fig. 41), and variations of δ2H values are shown in Figure 42. The outliers present 
groundwater enriched in 2H (>44.0 ‰) at sampling locations Padiščak and Pasji rep which are close to the 
seaside. 
 
Table 16: Descriptive statistics for groundwater δ2H 
Parameter n X Md Min Max S 

δ2H (‰) 174 -61.6 -62.5 -78.6 -40.6 7.5 
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Figure 41: Histogram of groundwater δ2H Figure 42: Box and whisker plot for 
groundwater δ2H 

 
Due to linear relationship between δ18O and δ2H which explains that isotopic fractionation factor of 
hydrogen is 8 times that of oxygen (Craig, 1961), the findings of groundwater δ2H are similar to those 
observed with groundwater δ18O. 
 
Rock type  
 
Mostly enriched in 2H is groundwater in the recharge areas of clastic sedimentary rocks, located near the 
coastal side (Fig. 43, Appendix 13B). Groundwater is depleted in 18O in the recharge area of igneous and 
metamorphic rocks (and in a few sampling locations in the carbonate rocks) which is significantly depleted 
in 18O compared to groundwater in recharge areas of clastic sedimentary and carbonate rocks. This is 
because groundwater was sampled in the high mountain region which receives typically isotopically 
depleted 2H precipitation. 
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A = clastic sedimentary rocks 
(n=52) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic 
rocks (n=12) 

Figure 43: Box and whisker plots for groundwater δ2H values in the recharge area of major rock 
types 
 
Groundwater in the recharge areas of Eocene flysch rocks is the most enriched in 18O (Figs. 44 and 45, 
Appendix 13B) and is significantly enriched (p<0.05) in 18O compared to groundwater with recharge areas 
with Permian Val Gardena layers, Jurassic carbonates, Ladinian igneous rocks, Miocene clastics, 
Miocene Lithothamnium limestone, Oligocene igneous rocks, Pliocene clastics, Oligocene clay “sivica”, 
old Paleozoic rocks, and Triassic carbonates. This is due to proximity of the Adriatic Sea and low elevated 
landscape. Groundwater sampled at higher altitudes (old Paleozoic rocks, and Triassic and Cretaceous 
carbonates) is depleted in 2H due to receiving isotopically depleted precipitation.  
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B = clay (n=2) 
C = gravel and sand (n=26) 
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Figure 44: Box and whisker plots for groundwater δ2H values in the recharge area of prevailing 
lithological unit 
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A = old Paleozoic rocks (n=4) 
B = Carboniferous-Permian beds 
(n=4) 
C = Permian Val Gardena layers 
(n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates 
(n=28) 
H = Eocene flysch rocks (n=6) 
I = Oligocene igneous rocks 
(n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=8) 
N = Quaternary clastics(medium- 
and coarse-grained) (n=26) 

Figure 45: Box and whisker plots for groundwater δ2H values in the recharge area of prevailing 
lithostratigraphic unit 
 
Aquifer porosity type 
 
There are no significant dfifferences in groundwater δ2H values and aquifer porosity type (Fig. 46, 
Appendix 13B) except of the large variance in distribution of groundwater δ2H values in the aquifers with 
fractured, and karstic and fractured porosity. Both types of aquifers are observed near the coast and in the 
mountains.  
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A = intergranular porosity (n=40) 
B = fractured porosity (n=24) 
C = fractured and karstic porosity 
(n=30) 
D = karstic and fractured porosity 
(n=74) 
E = mixed porosity (karstic, 
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Figure 46: Box and whisker plots for groundwater δ2H values in the recharge area of prevailing 
aquifer porosity type  
 
 
 
 
 



Mezga, K.: Natural hydrochemical background and dynamics of groundwater in Slovenia. 
Ph.D. Thesis. University of Nova Gorica, 2014. 
____________________________________________________________________________________ 

59 
 

Sampling object type 
 
Groundwater is enriched in 2H sampled in boreholes (Fig. 47, Appendix 13B) due to proximity of the 
seaside and recharge areas in lowlands. Depleted in 2H is groundwater sampled from pumping stations 
(old groundwater), and in springs (high mountain regions). 
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Figure 47 : Box and whisker plots for groundwater δ2H values according to sampling object type 
 
 
Spatial distribution of δ2H in groundwater 
 
Groundwater is enriched in 2H in the SW part of the country near the coast (Fig. 48). The inner continental 
waters receive isotopically 2H depleted precipitation, as well as groundwater sampled at high elevations in 
the N-NW, N, and N-NE part of the country (Karavanke Mts., Alps region, and Pohorje Mt.).   
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Figure 48: Spatial distribution of groundwater δ2H  
 
 
4.3.3. Groundwater deuterium excess (d-excess) 
 
Descriptive statistics of groundwater d-excess  
 
Groundwater d-excess values vary between 6.0 ‰ and 21.4 ‰, with mean value of 12.4 ‰ and median 
12.4 ‰ (Tab. 17). Histogram (Fig. 49) shows that groundwater d-excess is close to normally distributed 
(Fig. 50) and variations of d-excess are presented in Figure 50 with outliers (7.7<d-excess) observed at 
sampling location LMV-1 Ljubljana, and outliers (d-excess>17.1) at sampling locations Padiščak, Maver, 
and Hubelj.  
 
Table 17: Descriptive statistics of groundwater d-excess 
Parameter n X Md Min Max S 

d-excess (‰) 174 12.4 12.4 6.0 21.4 2.0 
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Figure 52: Spatial distribution of groundwater d-excess  
 
Additional information on groundwater d-excess is found in the Appendix 13C.  
 
 
4.3.4. Isotopic composition of Slovenian precipitation in comparison to groundwater 
 
Comparison of isotopic composition in groundwater with precipitation   
 
Groundwater samples were categorised based on 3H activity into young and old groundwater (Tab. 18). 
 
Table 18: Descriptive statistics of shallow (young) and deep (old) groundwater isotopic 
composition. 

shallow groundwater deep groundwater 

X Min Max S X Min Max S 

δ18O (‰) -9.21 -11.43 -6.49 0.94 -10.15 -10.5 -9.65 0.26 

δ2H (‰) -61.2 -78.6 -40.6 7.4 -69.9 -72 -67.2 1.5 

d-excess (‰) 12.44 6 21.4 2.03 11.29 8.6 14.8 1.84 

 
The mean isotopic composition of oxygen (and hydrogen) in long-term measurements of precipitation at 
the meteorological stations at Ljubljana, Portorož Airport, and Kozina (Vreča et al., 2010) was compared 
with isotopic composition measured in Slovenian groundwater (Tab. 19).  
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A major role is also played by relief characteristics, which determine orographic precipitation formation 
processes, and are reflected further in the oxygen and hydrogen isotope composition in precipitation. In 
this frame, the orographic barriers of the Trnovo–Banjšice plateau on the west and the Dinaric Gorski 
Kotar massif on the east side of the study area play an important role, inducing strong orographic 
precipitation in SW wind situations (Rakovec et al., 2003).  
 
The radar pictures of a precipitation event in July 2009 and February 2013 (Figs. 56 and 57) show a 
prevailing precipitation direction and the meteorological situation where the SW parts of Slovenia (Alps 
and Coastal region) receive more rain than the SE part. 
 

Figure 56: Radar picture showing a typical 
precipitation pathway (8 July 2009) (Report of 
the heavy rain from 6th to 10th July 2009) 

Figure 57: Radar picture showing a typical 
precipitation pathway (6 February 2013) 
(Radar precipitation measurement from 6th of 
February 2013) 

 
For all three regions, the isotope altitude effect was calculated by adding the trend line on the scatter plot 
of mean altitudes of the recharge areas, compared with the mean values of δ18O in the water. δ2H 
variations in groundwater match equally well, as expected. 
 
From the Fig. 53 it is observed that statistically significant correlation exists between δ18O in groundwater 
and the mean altitude of the recharge area in the Alps and Coastal region. The altitude effect (total 45 
sampling locations) is -0.25 ‰ δ18O/100 m (r=-0.81, p<0.001) and -2.25 ‰ δ2H/100 m (r=-0.7, p<0.001). 
Statistically significant correlation was observed also for the Štajerska and Dolenjska region. The altitude 
effect (total 30 sampling locations) is -0.27‰ δ18O/100 m (r=-0.79, p<0.001) and -1.84‰ δ2H/100 m 
(r=-0.7, p <0.001). The groundwater isotopic composition in Bela krajina region is more uniform within a 
limited area, and variations in isotopic values are small. The correlation is statistically significant, with an 
altitude effect (total 8 sampling locations) of -0.33 ‰ δ18O/100 m (r=-0.89, p<0.01) and -2.40 ‰ δ2H/100 m 
(r =-0.89, p<0.01) (Mezga et al., 2014).  
 
The calculated isotope altitude effects derived from groundwater samples are comparable to the 
estimated altitude effects in precipitation from the past researches in Slovenia and neighbouring countries. 
For example, for the Slovenian coastal part, the isotope altitude effect is -0.3 ‰ δ18O/100 m (Vreča et al., 
2006a), for the central part of Slovenia -0.2 ‰ δ18O/100 m (Brenčič and Poltnig, 2008), for Slovenia and 
Croatia -0.37 ‰ to -0.26 ‰ δ18O/100 m (Horvatinčić et al., 2005), in Austria -0.21 ‰ δ18O/100 m (Kralik et 
al., 2003) and in Italy close to -0.2 ‰ δ18O/100 m (Longinelli and Selmo, 2003). 

 
 
Isotopic composition of sampled water compared to meteoric water lines 
 
Mean values of δ18O and δ2H in groundwater are plotted on a δ18O-δ2H graph (Fig. 58) compared with 
various precipitation’ meteoric water lines; GMWL, EMMWL, and LMWLs for Ljubljana, Zagreb (Croatia), 
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4.4. General geochemistry of Slovenian groundwaters  
 
4.4.1. Ion pattern and hydrofacies 
 
The descriptive statistics of major ion concentrations are given in Appendix 11. It is evident from the Fig. 
60 that in sampled groundwater the dominant cation in groundwater is Ca2+ (range from 2-152 mg/L) and 
HCO3

- by far the most dominant anion (19-575 mg/L).  
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Figure 60: Box and whisker plots of major chemical ions in sampled groundwater 
 
Ion pattern and hydrofacies characterisation showed that the majority of Slovenian groundwaters belong 
to calcium-magnesium rich waters characterized as Ca2+-Mg2+-HCO3

- and Ca2+-HCO3
- waters (Table 19). 

Groundwater Ca2+, Mg2+ and HCO3
- contents result from dissolution of carbonate rocks prevailing in the 

recharge areas of sampled groundwater. This water is dominated by earth alkali elements and weak 
acids. Groundwater also has Na+-Ca2+-Mg2+-HCO3

- and Ca2+-Na+-HCO3
- water types, which contain 

beside earth alkali elements and weak acidic anions also more alkali metals. The minority of water 
samples belongs to Ca2+-Mg2+-HCO3

--NO3
-, Ca2+-HCO3

--SO4
2-, and Ca2+-Mg2+-HCO3

--SO4
2- water types, 

where water contains more strong acidic anions. It is believed that the source of NO3
- in groundwater 

comes from leaching from the soil in agriculture and urban land uses. The source of SO4
2- in groundwater 

in high mountain region is likely of natural origin from carbonate rocks containing gypsum (Brenčič and 
Polting, 2008; Vidrih, 2006).  
 
The 7 sampling locations (Tab. 20) marked with asterisk in bold show different water types according to 
seasonal samplings. For instance, in one season the Ca2+-HCO3

- water is characteristic, whereas in other 
season the Ca2+-Mg2+-HCO3

- water. This suggest that limestone as well as dolomite prevail in the 
recharge areas, what is also seen in the variations of groundwater Ca2+/Mg2+ molar ratio.  
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Table 21: Water types according to prevailing lithological unit in the recharge areas (1 water 
sample excluded) 

 
Although Na+ and Cl- concentrations are generally low in most groundwater, their concentrations can be 
relatively high locally and the waters may tend toward the Na–K–Cl type. Water samples indicated by 
dashed circle (Fig. 63) belong to intergranular aquifers in north-eastern part of Slovenia where 
groundwater contains elevated concentrations of Cl- and SO4

2- and less HCO3
-. The sources of both 

solutes in groundwater are likely anthropogenic. Water samples circled by the solid line have their 
recharge areas in metamorphic rocks and in clay, and contain more alkali metals. The observed trend 
could be a consequence of cation-exchange (natural water softening) in clay minerals, or a process of 
plagioclase mineral (albite) weathering.  
 
 

 
Figure 63: Piper diagram showing the composition of groundwater in the study area (blue – 
carbonate rocks: limestone prevailing, dolomite prevailing, carbonates with clastics; brown – 
clastic sedimentary rocks: flysch rocks, clay, gravel and sand, gravel, sand and clay, shale and 
sandstone; red - igneous and metamorphic rocks) 
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 Figure 69: Histogram for groundwater pH values 
(n=175) 

Figure 70: Box and whisker plot for 
groundwater pH values (n=175) 

 
Rock type  
 
Groundwater from recharge areas with carbonate rocks is significantly more alkaline (p<0.05) than 
groundwater from recharge areas of clastic sedimentary rocks, which is more acidic. In the recharge areas 
of clastic sedimentary, and igneous and metamorphic rocks (Fig. 71; Appendix 13D), groundwater could 
be influenced by the prevailing silicate rocks in the recharge areas of groundwater. This is indicated by the 
moderate correlation between groundwater Si and pH (rs=-0.61, p>0.05). Additionally, the thickness of soil 
horizons and increased microbiological activities could also decrease soil pH as well as groundwater pH. 
In the recharge areas of carbonate rocks the range of pH is narrower, due to prevalence of carbonate 
minerals and thinner (or non-existent) soil horizon.  
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A = clastic sedimentary rocks 
(n=53) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic 
rocks (n=12) 

Figure 71: Box and whisker plots for groundwater pH values in the recharge area of major rock 
types 
 
Groundwater with acidic character was found in the recharge areas of gravel, sand (and clay) (Miocene, 
Pliocene, and Quaternary clastics), and in Oligocene igneous rocks and old metamorphic Paleozoic rocks 
(Figs. 72 and 73; Appendix 13D). Groundwater pH values from recharge areas with gravel, sand and clay 
are significantly lower (p<0.05) compared groundwater from other recharge areas, except gravel and 
sand, and metamorphic rocks. According to lithological classification groundwater pH values from 
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recharge areas with Pliocene clastitcs are significantly lower (p<0.05) pH compared to groundwater in 
recharge areas with Eocene flysch, Jurassic, Cretaceous, and Triassic carbonates, Ladinian igneous 
rocks, Miocene Lithothamnium limestone, Carboniferous-Permian beds, Oligocene clay “sivica”. This is a 
result of prevailing silicate minerals in the rocks, greater soil thickness and type and density of vegetation 
cover in the recharge areas. Alkaline groundwaters are observed in the areas where it is in contact with 
other lithological units where mostly carbonate minerals (and/or cement) dominate in the recharge areas. 
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A = flysch rocks (n=7) 
B = clay (n=2) 
C = gravel and sand (n=26) 
D = gravel, sand and clay (n=11) 
E = shale and sandstone (n=7) 
F = limestone prevailing (n=74) 
G = dolomite prevailing (n=30) 
H = carbonates with clastics (n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 

Figure 72: Box and whisker plots for groundwater pH values in the recharge area of prevailing 
lithological unit 
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A = old Paleozoic rocks (n=4) 
B = Carboniferous-Permian beds 
(n=5) 
C = Permian Val Gardena layers 
(n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates (n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics (medium- 
and coarse-grained) (n=26) 

Figure 73: Box and whisker plots for groundwater pH in the recharge area of prevailing 
lithostratigraphic unit 
 
Aquifer porosity type 
 
According to the aquifer porosity type the groundwater is mostly alkaline (Fig. 74, Appendix 13D), except 
for groundwater in the aquifers with intergranular porosity where acidic groundwater dominates it is 
significantly more acidic compared to groundwater from aquifers with karstic and fractured porosity, and 
fractured and karstic porosity. Acidic groundwater is observed in the alluvial plains of NE part of the study 
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area, where Mura River deposits are mostly of silicate composition. Additonally, this part of Slovenia is 
known for intensive agricultural land uses, where leaching of nutrients, and influence of waste water and 
sewage decrease groundwater pH.   
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A = intergranular porosity (n=39) 
B = fractured porosity (n=26) 
C = fractured and karstic porosity 
(n=30) 
D = karstic and fractured porosity 
(n=74) 
E = mixed porosity (karstic, 
fractured, intergranular) (n=6) 

Figure 74: Box and whisker plots for groundwater pH values in the recharge area of prevailing 
aquifer porosity type 
 
Land cover/use  
 
Alkaline groundwater is observed in the recharge areas with bare rocks, moors and heathland (Figs. 75 
and 76; Appendix 13D) where urban and agricultural land uses are less dense. Acidic groundwater is 
observed mostly in the NE part of Slovenia in lowlands where in the recharge areas the thickness of soil 
layer is bigger, and intense agricultural activities are present on the arable lands (intense use of nutrients 
and plant protection products, applications of slurry and manure on the fields, leakage of sewage systems, 
septic tanks and waste water).  
There are no significant differences between pH values according to both land cover/use classifications. 
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A = bare rocks (n=8) 
B = moors and heathland (n=2) 
C= natural grasslands (n=2) 
D = coniferous forest (n=20) 
E = broad-leaved forest (n=45) 
F = mixed forest (n=56) 
G = non-irrigated arable land (n=10) 
H = complex cultivation patterns 
(n=18) 
I = land principally occupied by 
agriculture, with significant areas of 
natural vegetation (n=10) 
J =industrial or commercial units 
(n=2) 

Figure 75: Box and whisker plots for groundwater pH values in the recharge area of prevailing land 
use type (CORINE Land Cover) 
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A = forest (n= 137) 
B = areas of less intense use of 
nutrients and plant protection 
products (n=18) 
C = areas of intense use of nutrients 
and plant protection products (n=16) 
D = urban areas (n=2) 

Figure 76: Box and whisker plots for groundwater pH values in the recharge area of prevailing land 
use type (Actual agricultural and forest land usage) 
 
Along with mineralogical composition also the pollutants in the aquifer increas the groundwater acidity, as 
well as the EC (Fig. 77, circle) (rs=0.51, p<0.05). Groundwater pH shows moderate correlation with Na+ 
(rs=-0.52, p<0.05) which, besides the silicate weathering, suggest the additional source of Na+ in 
groundwater (Fig. 78, square). 
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parts of the country where in the recharge areas silicate mineral composition of igneous and metamorphic 
rocks, and Mura River deposits prevail. This suggests the weathering of silicate minerals in groundwater. 
Groundwater acidity could be additionally accelerated by various agricultural practices (plowing, excessive 
use of nutrients, and leakage of waste water) and by acid rain water. Like in the Podravje and Pomurje 
region (NE part of Slovenia), intense agricultural activity is present which in combination with silicate 
bedrock provides (very) acidic soil. Since intense crop production, acidic rain, leached bedrock cations 
(mostly Ca2+ and Mg2+ in soil), and acidic activity of most (mineral) fertilizers, destroy the favourable 
neutral soil pH for crop growth, the soil is neutralised by the application of limes CaO, CaCO3, and 
Ca(OH)2 (Mihelič et al., 2010). Additionaly leaching from septic tanks or sewage systems could also affect 
groundwater pH character. 

 
Figure 80: Spatial distribution of groundwater pH  
 
In the recharge areas in the high mountain regions mostly with carbonate rocks in the NW and N part 
alkaline groundwater (pH>7.75) is observed. This is because of very thin (or non-existing) soil layers and 
consequently low microbiological activity as well as low vegetation density and high amount of 
precipitation (water dilution). Also karstic aquifers are known for their openness to the atmosphere. In 
these regions less human impact is observed. Slightly acidic groundwater (pH<7.25) is observed in the NE 
part of the country due to mostly prevailing silicate mineral composition of rocks in the recharge areas of 
igneous and metamorphic rocks, and clastics. In Podravje and Pomurje region (NE part) the soil acidity 
could be accelerated by various agricultural practices where farmers fertilize soil with slurry or manure, or 
the soil is being neutralized by lime application. Additionally possible leaching from septic tanks or sewage 
systems could also affect groundwater pH.  
 
 
4.5.1.1. Electrical conductivity  (EC) in groundwater 
 
Descriptive statistics of groundwater EC  
 
Groundwater EC varies between 28 µS/cm and 882 µS/cm, with mean value of 368 µS/cm, and median 
366 µS/cm (Tab. 24). Histogram of EC (Fig. 81) in observed groundwater shows that data is normally 
distributed, and box and whisker plot for EC (Fig. 82) shows that there are some outliers 
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(EC >760 µS/cm), which are observed in the NE part of the study area (OV-29 Brunšvik, Šempeter 0840, 
Strahinec and Vidovič. The precision of EC is 0.5 %. None of water samples exceeds the allowed 
maximum level for drinking water (2500 μS/cm) according Rules on drinking water (2004). 
 
Table 24: Descriptive statistics of groundwater EC 
Parameter n X Md Min Max S 

EC (µS/cm) 175 368 366 28 882 173 
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Figure 81: Histogram for groundwater EC (n=175) Figure 82: Box and whisker plot for 
groundwater EC (n=175) 

 
Rock type  
 
In the recharge areas of clastic sedimentary rocks the groundwater EC is the highest (Fig. 83, Appendix 
13E) and is significantly higher (p<0.05) compared to groundwater in the recharge areas with igneous and 
metamorphic rocks. This suggests that increased concentrations of dissolved ions in groundwater are due 
to presence of soluble minerals. The lowest groundwater EC is measured in the recharge areas of 
igneous and metamorphic rocks which contain poorly soluble silicate minerals. 
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Figure 83: Box and whisker plots for groundwater EC in the recharge area of major rock types 
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Groundwater EC in recharge areas of gravel, sand (and clay) (Miocene and Quaternary clastics), and 
Eocene flysch rocks (Fig. 84 and 85, Appendix 13E) is the highest. In the recharge areas with Miocene 
clastics groundwater is significantly higher (p<0.05) compared to groundwater with recharge areas with all 
observed lithological units except with Quaternary clastics (medium- and coarse-grained).This is due to 
increased dissolved solids or salts in groundwater. Groundwater EC shows strong correlation with HCO3

- 
(rs = 0.92, p<0.05), Ca2+ (rs=0.89, p<0.05), and Mg2+ (rs=0.79, p<0.05) suggesting the majority of ions 
present in groundwater are due to dissolution of carbonate rocks. The lowest groundwater EC was 
observed in the recharge areas of poorly permeable rocks like shale and sandstone (Carboniferous-
Permian beds), Oligocene igneous rocks and metamorphic rocks (old Paleozoic rocks). Groundwater with 
recharge areas in Oligocene igneous rocks, Permian Val Gardena layers, and old Paleozoic rocks is 
significantly lower (p<0.05) compared to recharge areas in Eocene flysch rocks, Cretaceous carbonates, 
Quaternary clastics (medium- and coarse-grained), Miocene Lithothamnium limestone, and Miocene 
clastics.  
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Figure 84: Box and whisker plots for groundwater EC in the recharge areas of prevailing 
lithological unit 
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A = old Paleozoic rocks (n=4) 
B = Carboniferous-Permian beds 
(n=5) 
C = Permian Val Gardena layers 
(n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates 
(n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks 
(n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics 
(medium- and coarse-grained) 
(n=26) 

Figure 85: Box and whisker plots for groundwater EC in the recharge area of prevailing 
lithostratigraphic unit 
 
Aquifer porosity type 
 
The highest groundwater EC is observed in aquifers with intergranular porosity (Fig. 86, Appendix 13E) 
which is significalnty higher (p<0.05) compared to groundwater from aquifers with fractured, karstic and 
fractured, and mixed porosity (karstic, fractured, intergranular). This is possible due to longer residence 
time, thicker soil layer, higher soil temperatures, and also influence of land use (urban and agricultural) in 
lowland alluvial aquifers. The lowest EC is observed in groundwater in aquifers with fractured porosity 
where groundwater usually has short residence time. Namelly fractured rock aquifers (dolomites, 
sandstones and igneous rocks) store and transmit water through crevices, joints, solution channels in 
otherwise impervious rocks (Sara, 2003). 
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Figure 86: Box and whisker plots for groundwater EC in the recharge area of prevailing aquifer 
porosity type 
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Land cover/use 
 
Groundwater with higher EC (>500 µS/cm) is observed at locations which recharge areas that are 
influenced by various human activities (Figs. 87 and 88, Appendix 13E). This includes recharge areas of 
industrial or commercial units, complex cultivation patterns, non-irrigated arable land, and land principally 
occupied by agriculture, with significant areas of natural vegetation. Groundwater EC is significantly higher 
(p<0.05) compared to recharge areas with bare rocks, moors and heathland, and coniferous forest. The 
possible sources are the use of various fertilizers as well as manure and slurry, leakage from septic tanks 
and sewage systems, waste water, salt for deicing roads during winter, and landfill leachate. This has 
been verified by the moderate correlation between groundwater EC and NO3

- (rs=0.69, p<0.05), Cl- 
(rs=0.69, p<0.05), and SO4

2- (rs=0.58, p<0.05). The lowest groundwater EC is observed in the 
groundwater’s recharge areas of bare rocks, moors and heathland, and forests at higher altitudes, due to 
absence of thick soil layer which could enhance carbonate dissolution by dissolved CO2, and due to land 
use, which is not favourable for population as well as not for intensive agricultural activities. 
 
According to Actual agricultural and forest land usage classification groundwater EC at areas of intense 
use of nutrients and plant protection products, and urban areas is significantly higher (p<0.05) compared 
to recharge areas under forest. 
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Figure 87: Box and whisker plots for groundwater EC in the recharge area of prevailing land use 
type (CORINE Land Cover) 
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Figure 88: Box and whisker plots for groundwater EC in the recharge area of prevailing land use 
type (Actual agricultural and forest land usage) 
 
Sampling object type 
 
The highest groundwater EC were observed in private wells (Figs. 89, Appendix 13E) because they are 
usually located in lowlands where the soil layer is thicker (soil CO2 is enriched) and the soil temperature is 
higher. Additionally, private wells are usually located near the farms and arable land (fields), reflecting the 
use of nutrients as well as possible leakage from septic tanks or sewage systems. The lowest EC is 
measured in groundwater sampled as springs, and as as surface water. Springs are usually located in 
mountain regions, where steep slopes cause absence of (thick) soil layer and short groundwater 
residence time, and increased amount of precipitation causes dilution of groundwater. Surface water 
indicates either low HCO3

- concentration, or low contents of dissolved salts in the water.  
 

 Median 
 25%-75% 
 Non-Outlier Range 
 Outliers
 Extremes

A B C D E F
0

200

400

600

800

1000

E
C

 (
µS

/c
m

)
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C = private well (n=8) 
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E = spring (n=58) 
F = surface water (n=20) 

Figure 89: Box and whisker plots for groundwater EC according to sampling object type 
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Spatial distribution of groundwater EC  
 
Increased groundwater EC (>500 µS/cm) (Fig. 90) is observed in alluvial plains in the central, E, and NE 
parts of Slovenia, and in the coastal part. Groundwater from alluvial plains is influenced mostly by the 
mineral composition of carbonate rocks, thick soil layer which enhaces dissolution of carbonate minerals, 
and higher soil temperatures present in lowlands. Additionally, intense agricultural land use (use of 
fertilizers, application of manure and slurry) and by direct human impact (leakage from septic tanks, 
sewage systems, waste water, use of salts for deicing roads during winter, and landfill leachate) also 
influence the groundwater EC. In the coastal part the proximity of the sea side could influence the 
groundwater composition in the form of precipitation or sea spray, or could be due to agricultural activity 
and use of fertilizers and pesticides. 
The lowest groundwater EC (<200 µS/cm) is observed in the high mountain regions in the NW part, where 
in carbonate recharge areas due to steep slopes the soil layer is thin (or non-existent), and consequently, 
very little vegetation (low level of respiration of soil organisms and the decay of organic matter) are 
present, as well as low soil temperatures. In the recharge areas also low temperatures are observed, and 
consequently low PCO2. During intense precipitation of heavy rain and snow melting (rs= -0.57, p<0.05) 
groundwater has short residence time, and is diluted. Most sampling locations in the high mountains are 
springs, which discharge responds primarily to heavy rainfalls, and also snowmelt runoff (fresh and soft 
water with low EC). Low groundwater EC is also observed in the recharge areas with igneous and 
metamorphic rocks which are poor in soluble carbonate minerals. 

 
Figure 90: Spatial distribution of groundwater EC 
 
 
4.6. Natural factors affecting Slovenian groundwater geochemistry 
 
4.6.1. Carbonate geochemistry in Slovenian groundwaters  
 
The main parameters that describe the carbonate dissolution in water are Ca2+, Mg2+, and their molar ratio 
(Ca2+/Mg2+), HCO3

-, CaCO3, PCO2, and δ13C-DIC. 
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4.6.1.1. Calcium (Ca2+) in groundwater 
 
Descriptive statistics of groundwater Ca2+  
 
Mean groundwater Ca2+ concentration is 60 mg/L, median 58 mg/L, maximum 152 mg/L, and minimum 2 
mg/L (Tab. 25). Groundwater Ca2+ concentration is normally distributed (Fig. 91) and concentration 
greater than 122 mg/L present outliers (Fig. 92) which were measured at sampling locations Padiščak, 
Strahinec, and Vidovič. The analytical uncertainty for Ca2+ is between 4 and 14 % (n=171) and in 4 water 
samples the groundwater Ca2+ concentrations were below LOD (½ LOD=2 mg/L) measured at sampling 
locations Pevčevo and Framski slap.  
 
Table 25: Descriptive statistics of groundwater Ca2+  
Parameter n X Md Min Max S 

Ca2+ (mg/L) 175 60 58 2 152 30 
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Figure 91: Histogram for groundwater Ca2+ 

concentration (n=175) 
Figure 92: Box and whisker plot for 
groundwater Ca2+ concentration (n=175) 

 
Rock type  
 
The range of groundwater Ca2+ concentration is in the clastic sedimentary rocks (Fig. 93, Appendix 13F) 
varies very widely due to various origins of sediments (Ca-rich minerals in carbonate, igneous and 
metamorphic rock, and in carbonate cement) (Mioč and Žnidarčič, 1989). The lowest groundwater Ca2+ 
concentration is observed in igneous and metamorphic rocks which is significantlly lower (p<0.05) 
compared to groundwater with clastic sedimentary and carbonate rocks. These rocks are usually low in 
Ca-rich minerals, where silicate minerals weather slower compared to carbonate minerals (Appelo and 
Postma, 2005).  
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Figure 93: Box and whisker plots for groundwater Ca2+ concentration in the recharge area of 
major rock types 
 
Increased groundwater Ca2+ concentrations are measured in the recharge area of gravel, sand (and clay), 
and flysch rocks (Figs. 94 and 95, Appendix 13F). The highest groundwater Ca2+ concentrations are 
measured in the recharge areas of Miocene clastics which are significantly higher (p<0.05) compared to 
recharge areas with other lithostratigraphic units. Thiese recharge areas contain pebbles of carbonate, 
igneous, metamorphic rocks, with sand-silt or carbonate cement (Mioč and Žnidarčič, 1989). The alluvial 
deposits mostly belong to Quaternary sediments of carbonate and silicate origin (Bavec and Pohar, 2009; 
EARS, 2009). In the sandstones the carbonate cement prevails, but micas in marls are also rich with 
calcium (Mioč and Žnidarčič, 1989). In Mura depression (NE part of Slovenia), the gravel is characterized 
by pebbles of quartz, igneous and metamorphic rocks, and to a lower extent, by pebbles of older 
sedimentary rocks originating from the Central Alps (Markič, 2009). In deep aquifers (NE part) the source 
of groundwater Ca2+ is in gravel, sand and clay in carbonates and phyllosilicates (Kralj, 2003). Similar 
mineralogical composition is also found in the recharge area of gravel and sand, where groundwater Ca2+ 
concentration is also high. The outlier in this group shows the absence of groundwater Ca2+ (and HCO3

-) 
due to the mineralogical composition of alluvial deposits which have mostly quartz and silicate minerals in 
igneous and metamorphic rocks in their recharge area (Žlebnik, 1982; Mioč and Žnidarčič, 1989). In the 
recharge areas with igneous and metamorphic rocks (old Paleozoic rocks and Oligocene igneous rocks), 
and shale and sandstone (Carboniferous-Permian beds), groundwater Ca2+ concentrations are 
significantly lower (p<0.05) compared to groundwater with limestone or dolomite prevailing (Cretaceous 
and Jurassic carbonates), Eocene flysch rocks, carbonate with clastics, and gravel and sand (and clay) 
(Quaternary clastics(medium- and coarse-grained), Miocene Lithothamnium  limestone, and Miocene 
clastics).  
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Figure 94: Box and whisker plots for groundwater Ca2+ concentration in the recharge area of 
prevailing lithological unit 
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Figure 95: Box and whisker plots for groundwater Ca2+ concentration in the recharge area of 
prevailing lithostratigraphic unit 
 
Groundwater Ca2+ correlates strongly with EC (rs=0.89, p<0.05), and with HCO3

- (rs=0.86, p<0.05) (Fig. 
96) suggesting the carbonate dissolution. Encircled locations belong to sampling locations Padiščak, 
Strahinec, and Vidovič where increased concentrations are possible due to anthropogenic sources. Figure 
97 presents only groundwater samples measured in the intergranular aquifers. Encircled sampling 
locations belong to groundwater sampled in mostly silicate alluvial deposits of Mura River (NE part), and 
deviate from other groundwater by their lower Ca2+ and HCO3

- concentrations.  
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igneous granodiorite, metamorphic biotite, and muscovite gneiss have a small proportion of Ca-bearing 
minerals and have low solubility rate. These rocks are also relatively impermeable for water so that 
precipitation runs off into surface streams and enters the aquifer in places where rocks are sufficiently 
fractured.  
 
Aquifer porosity type 
 
The highest groundwater Ca2+ concentrations are found in aquifers with intergranular porosity (Fig. 99, 
Appendix 13F), due to possible anthropogenic influence in the recharge area of groundwater where 
mostly agricultural activity is present in lowlands. Groundwater Ca2+ concentrations in those aquifers are 
significantly higher (p<0.05) compared to groundwater from recharge areas in aquifers with other porosity 
types. The lowest groundwater Ca2+ concentrations are observed in aquifers with fractured porosity where 
mostly non-carbonate minerals prevail.  
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Figure 99: Box and whisker plots for groundwater Ca2+ concentration in the recharge area of 
prevailing aquifer porosity type 
 
Land cover/use 
 
The highest groundwater Ca2+ concentration is observed in the recharge areas of non-irrigated arable 
land, complex cultivation patterns, land principally occupied by agriculture, with significant areas of natural 
vegetation (Figs. 100 and 101, Appendix 13F) where intense use of nutrients is present. Additionally, 
increased groundwater Ca2+ concentration was measured in groundwater in the recharge areas of 
industrial or commercial units, reflecting urban land use. Groundwater Ca2+ concentrations in the recharge 
areas of industrial or commercial units and complex cultivation patterns are significantly higher (p<0.05) 
compared to groundwater with bare rocks and moors and heathland. In the NE part of Slovenia the soil 
has due to natural and anthropogenic influences more acidic character which is not favourable for crops 
growth. When farmers apply lime and organic fertilizers on the fields, degradation of organic matter in soil 
is accelerated, leading to higher soil CO2 and greater carbonate dissolution. Also the higher air and soil 
temperatures in lowlands contribute to greater soil CO2 production. The lowest groundwater Ca2+ 
concentrations are observed in the recharge areas bare rocks, and marshes and heath, and forests, due 
to less intense use of nutrients and plant protection products, where agricultural and urban activities are 
less expressed. Groundwater Ca2+ concentrations are significantly lower (p<0.05) in the recharge areas 
with moors and heathland compared to recharge areas of land principally occupied by agriculture, with 
significant areas of natural vegetation, and non-irrigated arable land. 
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According to Actual agricultural and forest land usage classification groundwater Ca2+ concentrations are 
significantly higher (p<0.05) in the recharge areas of intense use of nutrients and plant protection products 
compared to forested recharge areas. 
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A = bare rocks (n=8) 
B = moors and heathland (n=2) 
C= natural grasslands (n=2) 
D = coniferous forest (n=20)   
E = broad-leaved forest (n=45) 
F = mixed forest (n=56) 
G = non-irrigated arable land 
(n=10) 
H = complex cultivation patterns 
(n=18) 
I = land principally occupied by 
agriculture, with significant areas 
of natural vegetation (n=10) 
J = industrial or commercial units 
(n=2) 

Figure 100: Box and whisker plots for groundwater Ca2+ concentration in the recharge areas 
of prevailing land use type (CORINE Land Cover) 
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D = urban areas (n=2) 

 

Figure 101: Box and whisker plots for groundwater Ca2+ concentration in the recharge area of 
prevailing land use type (Actual agricultural and forest land usage) 
 
Figures 102 and 103 suggest possible influence on increased groundwater Ca2+ concentrations due to 
anthropogenic influence on the groundwater, as a consequence of fertilizer use (sampling locations OV-29 
Brunšvik, Šempeter 0840, Vidovič, Strahinec, Padiščak, Figs. 104-107) which has been verified with 
moderate correlation between Ca2+ and NO3

- (rs= 0.60, p<0.05), poor correlation between with K+ (rs= 
0.36, p<0.05), moderate correlation with SO4

2- (rs= 0.52, p<0.05), and moderate correlation between Ca2+ 
and Cl- (rs= 0.62, p<0.05).  
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lowest groundwater Ca2+ concentrations are observed in surface waters where recharge areas are in high 
mountains or in poorly permeable rocks. 
 

 Median 
 25%-75% 
 Non-Outlier Range 
 Outliers

A B C D E F
0

20

40

60

80

100

120

140

160

C
a2+

 (
m

g
/L

)

A = pumping station (n=35) 
B = borehole (n=10) 
C = private well (n=8) 
D = spring capture (n=44) 
E = spring (n=58) 
F = surface water (n=20) 

Figure 108: Box and whisker plots for groundwater Ca2+ concentration according to sampling 
object type 
 
Spatial distribution of groundwater Ca2+  
 
The lowest groundwater Ca2+ concentrations were found in the NNE part (Pohorje Mt.), around central 
and north-eastern part of the country, where igneous and metamorphic rocks, shale and sandstone, and 
gravel, sand, and clay prevail in the recharge area of sampled groundwater. Plotted groundwater samples 
on the Piper diagram (Fig. 114) suggest a cation-exchange (natural water softening) in the recharge area 
of clays. Low groundwater Ca2+ values are also observed in the recharge area of high karst carbonate 
rocks most possibly due  to low or non-existent soil layer and low atmospheric CO2, alpine type of 
vegetation, low air temperatures, snow coverage (surface drainage when snow melting), groundwater 
dilution (increased precipitation rate by 1,500-3,200 mm of precipitation per year (EARS, 2006) causing 
fast underground drainage via channels or fractureds and surface drainage, or dolomite prevailing in the 
recharge areas. On the contrary, increased groundwater Ca2+ concentrations are observed mostly in all 
alluvial aquifers with the exception of alluvial plains in the NE and E part of the country, and coastal part. 
Groundwater Ca2+ concentration peaks are observed at sampling location Strahinec and Padiščak and are 
believed to be increased due to anthropogenic influence on groundwater. 
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Figure 109: Spatial distribution of groundwater Ca2+  
 
 
4.6.1.2. Magnesium (Mg2+) in groundwater 
 
Descriptive statistics of groundwater Mg2+  
 
The mean groundwater Mg2+ concentration is 13.0 mg/L, median 9.5 mg/L, maximum 42.0 mg/L, and 
minimum 1 mg/L (Tab. 26). Groundwater Mg2+ is not normally distributed (Fig. 110) and its concentration 
distribution is found in the Figure 111. The analytical uncertainty for Mg2+ is 4.5-19 % (n=164) and 
concentrations below LOD (½ LOD=1 mg/L) are found in 11 water samples (sampling locations Korentan, 
Čemažarjev izvir, Godec, Pevčevo, Framski slap, Žegnani studenec).  
 
Table 26: Descriptive statistics of groundwater Mg2+  
Parameter n X Md Min Max S 

Mg2+ (mg/L) 175 13.0 9.5 1.0 42.0 10.1 
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Figure 110: Histogram for groundwater Mg2+ 

concentration (n=175) 
Figure 111: Box and whisker plot for 
groundwater Mg2+ concentration (n=175) 

 
Rock type  
 
Groundwater Mg2+ concentrations in clastic sedimentary and carbonate rocks is significantly higher 
(p<0.05) compared to concentrations measured in the recharge are of igneous and metamorphic rocks 
(Fig. 112, Appendix 13G). This is due to greater share of Mg-bearing minerals in the carbonate and clastis 
sedimentary rocks, solubility rate of minerals in aquifer’s rocks, soil and atmospheric CO2, groundwater 
dilution by precipitation, and also due to anthropogenic influence on groundwater mostly in the recharge 
area of clastic sedimentary rocks in the north-eastern part of the study area. In the recharge area of 
igneous and metamorphic rocks groundwater is depleted in Mg2+ content due to the lack of magnesium-
rich minerals in silicate rocks, which are weathering slowly.  
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A = clastic sedimentary rocks 
(n=53) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic 
rocks (n=12) 
 

Figure 112: Box and whisker plots for groundwater Mg2+ concentration in the recharge area of 
major rock types 
 
In the recharge areas of Pliocene, Quaternary, and Miocene clastics, the groundwater Mg2+ is the highest 
(Figs. 113 and 114, Appendix 11G). Medium groundwater Mg2+ values were found in the recharge area in 
Eocene flysch rocks, Oligocene clay “sivica”, and carbonates. The lowest groundwater Mg2+ content was 
measured in the recharge area in igneous and metamorphic rocks. Groundwater Mg2+ concentrations in 
the recharge areas of Miocene clastics is significantly higher compared to recharge areas with Eocene 
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flysch rocks, Jurassic and Cretaceous carbonates, Ladinian igneous rocks, Oligocene igneous rocks, 
Carboniferous-Permian beds, Oligocene clay “sivica”, and old Paleozoic rocks. Groundwater Mg2+ 
concentrations in the recharge areas of Pliocene clastics is significantly higher (p<0.05) compared to 
recharge areas with Ladinian igneous rocks, Oligocene igneous rocks, Carboniferous-Permian beds, and 
old Paleozoic rocks. 
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A = flysch rocks (n=7) 
B = clay (n=2) 
C = gravel and sand (n=26) 
D = gravel, sand and clay (n=11) 
E = shale and sandstone (n=7) 
F = limestone prevailing (n=74) 
G = dolomite prevailing (n=30) 
H = carbonates with clastics (n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 
 

Figure 113: Box and whisker plots for groundwater Mg2+ concentration in the recharge area of 
prevailing lithological unit 
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A = old Paleozoic rocks (n=4)  
B = Carboniferous-Permian beds (n=5) 
C = Permian Val Gardena layers (n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates (n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics (medium- and 
coarse-grained) (n=26) 

Figure 114: Box and whisker plots for groundwater Mg2+ concentration in the recharge area of 
prevailing lithostratigraphic unit 
 
High groundwater Mg2+ concentrations in the recharge areas with carbonate rocks (dolomite or limestone 
prevailing, and carbonates with clastics) are due to magnesium-rich minerals (dolomites) in carbonate 
rocks. This has been verified with strong correlations between Mg2+ and EC (rs=0.79, p<0.05) and HCO3

- 
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D = karstic and fractured 
porosity (n=74) 
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Figure 119: Box and whisker plots for groundwater Mg2+ concentrations in the recharge area 
of prevailing aquifer porosity type 
 
Land cover/use 
 
The highest groundwater Mg2+ concentrations are observed in the recharge areas of land principally 
occupied by agriculture, with significant areas of natural vegetation, complex cultivation patterns, and 
industrial or commercial units (Figs. 120 and 121, Appendix 11G), suggesting possible anthropogenic 
source in groundwater (fertilizers). Increased groundwater Mg2+ values are also observed in few 
groundwater samples of the recharge area of deciduous forest. The lowest groundwater Mg2+ values are 
found in the recharge areas of bare rocks, marshes and heaths, and coniferous forest where the 
anthropogenic influence is less pronounced.   
 
There are no significant differences in Mg2+ concentrations according to CORINE Land Cover 
classification and Actual agricultural and forest land usage classification. 
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H = complex cultivation patterns 
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Figure 120: Box and whisker plots for groundwater Mg2+ concentration in the recharge area of 
prevailing land use type (CORINE Land Cover) 
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Figure 121: Box and whisker plots for groundwater Mg2+ concentration in the recharge area of 
prevailing land use type (Actual agricultural and forest land usage) 
 
Sampling object type 
 
The highest groundwater Mg2+ concentrations are observed in private wells due to mineralogical 
composition of rocks in the recharge areas or possibly anthropogenic influence (Fig. 122, Appendix 13G). 
The lowest groundwater Mg2+ concentration was observed in springs and surface waters in high mountain 
regions, mostly due to rock type, and climatic conditions.  
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A = pumping station (n=35) 
B = borehole (n=10) 
C = private well (n=8) 
D = spring capture (n=44) 
E = spring (n=58) 
F = surface water (n=20) 

Figure 122: Box and whisker plots of groundwater Mg2+ concentrations according to sampling 
object type 
  
Spatial distribution of groundwater Mg2+ 
 
The lowest groundwater Mg2+ concentration is found in the NNE (Pohorje Mt.) and in the recharge area of 
igneous and metamorphic rocks (Fig. 123), where Mg-rich minerals are not so abundant (Hinterlechner-
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Ravnik, 1973; Hinterlechner-Ravnik and Moine, 1977). The concentrations are also low due to elevated 
relief, which causes surface drainage and groundwater dilution by meteoric water of tributaries of various 
streams. Also low groundwater Mg2+ concentrations are found in the northern and north-western part of 
the country (Julian Alps and Kamnik-Savinja Alps) where more calcium enriched carbonate minerals 
prevail in the recharge area. Similar as groundwater Ca2+ concentrations the Mg2+ concentrations are low 
due to low CO2 content in the soil and in the atmosphere, groundwater dilution causing fast underground 
drainage via channels or fractureds and surface drainage, and limestone prevailing in the recharge area. 

 
Figure 123: Spatial distribution of groundwater Mg2+  
 
4.6.1.3. Molar ratio between calcium and magnesium (Ca2+/Mg2+) in groundwater 
 
Descriptive statistics of groundwater Ca2+/Mg2+ molar ratio 
 
The mean Ca2+/Mg2+ molar ratio is 4.0, median 3.1, minimum 1.0 and maximum 15.9 (Tab. 27). 
Groundwater samples where either Ca2+ or Mg2+ concentration was below LOD were excluded when 
calculating Ca2+/Mg2+ molar ratios (sampling locations Pevčevo, Framski slap, Godec, Žegnani studenec, 
Korentan, and Čemažarjev izvir). Values of groundwater Ca2+/Mg2+ molar ratio are not normally distributed 
(Fig. 124) and values above 10.2 present outliers (sampling locations Brekovice, Vipava, Metliški Obrh, 
Obrh Rinža, Debevčev mlin) (Fig. 125). None of water samples had the Ca2+/Mg2+ molar ratio less than 1.  
 
Table 27: Descriptive statistics of groundwater Ca2+/Mg2+ molar ratio 
Parameter n X Md Min Max S 

Ca2+/Mg2+ molar ratio 164 4.0 3.1 1.0 15.9 2.9 
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Figure 124: Histogram for groundwater 
Ca2+/Mg2+ molar ratio (n=164) 

Figure 125: Box and whisker plot for 
groundwater Ca2+/Mg2+ molar ratio (n=164) 

 
Rock type  
 
The highest Ca2+/Mg2+ molar ratio was found in the recharge ares of igneous and metamorphic rocks (Fig. 
126, Appendix 13H) which suggest dissolution of silicate minerals (n=3) (sampling locations Brekovice 
and Čemažarjev izvir). There are no statistically significant differences (p<0.05) between observed 
groups. Extreme values of groundwater Ca2+/Mg2+ molar ratios are observed in the recharge areas with 
carbonate rocks where Mg2+ concentration is very low. This suggests the prevalence of calcite over 
dolomite in the recharge area of limestones and in silicate rocks.  
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A = clastic sedimentary rocks  
(n=53) 
B = carbonate rocks (n=108) 
C = igneous and metamorphic rocks 
(n=3) 

Figure 126: Box and whisker plots for groundwater Ca2+/Mg2+ molar ratio in the recharge area of 
major rock types 
 
The highest groundwater Ca2+/Mg2+ molar ratio is observed in the recharge areas of flysch rocks (Figs. 
127 and 128, 13H) which is significantly higher (p<0.05) compared to recharge areas with dolomite 
prevailing, gravel and sand (and clay), and shale and sandstone. Also high are Ca2+/Mg2+ molar ratios in a 
few outliers in the recharge areas of limestone prevailing. The outliers in gravel and sand are observed at 
sampling location in the alluvial deposits (NE part) with lower carbonate content. Outlier with the highest 
molar ratio in gravel and sand was found in carbonate (limestone) recharge area of Soča River (north-
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western part). In the dolomite prevailing recharge area one sampling location appears as an outlier due to 
the highest molar ratio, suggesting the prevailing limestone over dolomite in the recharge area. The lowest 
molar ratios are observed in the recharge areas of shale and sandstone, and dolomite prevailing. 
Groundwater Ca2+/Mg2+ molar ratio is significantly lower (p<0.05) in the recharge areas with Permian Val 
Gardena layers and Pliocene clastics compared to Eocene flysch rocks and Jurassic carbonates. 
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A = flysch rocks (n=7) 
B = clay (n=2) 
C = gravel and sand (n=26) 
D = gravel, sand and clay (n=11) 
E = shale and sandstone (n=7) 
F = limestone prevailing (n=72) 
G = dolomite prevailing (n=30) 
H = carbonates with clastics (n=6) 
I = igneous rocks (n=3) 
J = metamorphic rocks (n=0) 

Figure 127: Box and whisker plots for groundwater Ca2+/Mg2+ molar ratio in the recharge area of 
prevailing lithological unit 
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A = old Paleozoic rocks (n=0) 
B = Carboniferous-Permian beds 
(n=5) 
C = Permian Val Gardena layers 
(n=2) 
D = Ladinian igneous rocks (n=1) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates 
(n=26) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks (n=2) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium 
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics (medium- 
and coarse-grained) (n=26) 

Figure 128: Box and whisker plots for groundwater Ca2+/Mg2+ concentration in the recharge 
areas of prevailing lithostratigraphic unit 
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Spatial distribution of groundwater Ca2+/Mg2+ molar ratio 
 
Groundwater Ca2+/Mg2+ molar ratios (<2) indicate that recharge area of sampled groundwater is in 
dolomite and mixed dolomite with limestone, where the water types Ca2+-Mg2+-HCO3

- and Na+-Ca2+-Mg2+-
HCO3 prevail (Fig. 129). Groundwater with higher molar ratio (>2) has mostly Ca2+-HCO3

- water type 
indicating limestone prevalence in the recharge area of sampled groundwater. High molar ratios are 
observed in the recharge area of calcite prevailing over dolomite in the carbonate recharge area 
(Korentan) and in the recharge area of silicate rocks.  

 
Figure 129: Spatial distribution of groundwater Ca2+/Mg2+ molar ratio  
 
 
4.6.1.4. Bicarbonate (HCO3

-) in groundwater  
 
Descriptive statistics of groundwater HCO3

-  
 
Descriptive statistics for groundwater HCO3

- is present in the Table 28. Groundwater HCO3
- concentration 

ranges between 19 mg/L and 575 mg/L, with mean value of 235 mg/L and median 234 mg/L. 
Groundwater HCO3

- concentrations are normally distributed (Fig. 130) and values higher than 534 mg/L 
(Fig. 131) present outliers (sampling location Strahinec). The uncertainty for HCO3

- is ± 3 % (n=175). 
 
Table 28: Descriptive statistics of groundwater HCO3

- 
Parameter n X Md Min Max S 

HCO3
- (mg/L) 175 235 234 19 575 110 

 



Mezga, K.: Natural hydrochemical background and dynamics of groundwater in Slovenia. 
Ph.D. Thesis. University of Nova Gorica, 2014. 
____________________________________________________________________________________ 

105 
 

-50 0 50 100 150 200 250 300 350 400 450 500 550 600 650

HCO3
- (mg/L)

0

5

10

15

20

25

30

35

nu
m

be
r 

of
 o

bs
er

va
tio

ns

 Median = 234
 25%-75% 
= (154, 321)
 Non-Outlier Range 
= (19, 534)
 Outliers0

100

200

300

400

500

600

H
C

O
3-  (

m
g

/L
)

 

Figure 130: Histogram for groundwater HCO3
- 

concentration (n=175) 
Figure 131: Box and whisker plot for 
groundwater HCO3

- concentration (n=175)
 
Rock type  
 
Groundwater HCO3

- concentrations in the recharge areas of clastic sedimentary and carbonate rocks 
rocks are significantly higher (p<0.05) compared to recharge areas with igneous and metamorphic rocks. 
These rocks are rich in carbonate minerals and/or cement (Fig. 132, Appendix 13I). Since groundwater 
HCO3

- concentrations in the recharge area of clastic sedimentary rocks exceed concentrations measured 
in some groundwater samples from recharge areas with carbonate rocks this may suggest the 
anthropogenic source in groundwater. Increased values (> 400 mg/L) are observed at sampling locations 
Strahinec, Vidovič, Padiščak, Vt-1 Tinsko, and Ščetar.  
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A = clastic sedimentary rocks (n=53) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic rocks 
(n=12) 

Figure 132: Box and whisker plots for groundwater HCO3
- concentration in the recharge area of 

major rock types 
 
The highest groundwater HCO3

- concentrations are measured in the recharge areas with Miocene 
clastites which are significantly higher (p<0.05) compared to recharge areas with other lithostratigraphic 
units, except with Eocene flysch rocks, and Quaternary clastics (medium- and coarse-grained).  This is 
due to dissolution of carbonate minerals and cement (Figs. 133 and 134, Appendix 13I). It is also believed 
that at sampling location Strahinec an anthropogenic influence is present (lime application). The lowest 
groundwater HCO3

- concentrations are measured in poorly permeable old Paleozoic rocks, Carboniferous-
Permian beds, and Oligocene igneous rocks. Groundwater HCO3

- concentrations in the recharge areas 
with Oligocene igneous rocks, Carboniferous-Permian beds, and old Paleozoic rocks which are 
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significantly lower (p<0.05) compared to recharge areas in Eocene flysch rocks, Cretaceous carbonates, 
Quaternary clastics (medium- and coarse-grained), Miocene Lithothamnium  limestone, Miocene clastics, 
and Pliocene clastics. 
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A = flysch rocks (n=7) 
B = clay (n=2) 
C = gravel and sand (n=26) 
D = gravel, sand and clay 
(n=11) 
E = shale and sandstone (n=7) 
F = limestone prevailing (n=74) 
G = dolomite prevailing (n=30) 
H = carbonates with clastics 
(n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 

Figure 133: Box and whisker plots for groundwater HCO3
- concentration in the recharge areas 

of prevailing lithological unit 
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A = old Paleozoic rocks (n=4) 
B = Carboniferous-Permian beds 
(n=5) 
C = Permian Val Gardena layers  
(n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates 
(n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics (medium- 
and coarse-grained) (n=26) 

Figure 134: Box and whisker plots for groundwater HCO3
- concentration in the recharge area of 

prevailing lithostratigraphic unit 
 
Dissolved groundwater Ca2+ and Mg2+ ions are supplied mostly by carbonate weathering and smaller 
contribution from the silicate weathering, as is indicated by low groundwater content of Si and relatively 
high HCO3

- (Fig. 135).  



Mezg
Ph.D.
_____

 

Due t
(use o
The o
where
calciu
correl
groun
could 
 

Figur
conce
 
In the
to the
water
soil la
groun
metam
Ca2+, 
 
Figure
samp
from 
indica
of DIC
mean
comp
deple
studie
spring
 

ga, K.: Natura
 Thesis. Univ
___________

to correlation
of lime, fertili
origin of incre
e mostly dolo
um carbonate
lations betw
ndwater influ

contain high

re 135: Grou
entrations  

e high mounta
e influence of
rs (short resid
ayer, and lo
ndwater from
morphic rock
Mg2+, Na+, a

e 137 shows
les from the
the carbona

ates that the 
C in the pH ra
n altitude of r
ared to grou

eted in CO2, lo
ed the tempe
g water at low

al hydrochem
versity of No
__________

ns with othe
izers, and co
eased groun
omites prevai
e reserve of

ween the hig
enced by th

her Ca2+ conc

undwater HC

ain karst con
f fresh rainwa
dence time) 

ower (initial) 
m the rechar
ks) where co
and K+, and c

s the correlati
 recharge ar

ate group, sin
dominant an
ange. Figure
recharge are
undwater at 
ow atmosphe
erature depe
wer temperat

mical backgro
va Gorica, 2

___________

r parameters
onstruction m
dwater HCO
il in the recha
f parent mat
ghest groun
he anthropog
centrations c

CO3
- versus S

ncentrations o
ater with low
before infiltra
total CO2. 

rge area of 
oncentrations
clay minerals

ion between 
reas in some
nce groundw
ion in sample

e 138 present
as. Groundw
lower altitud
eric CO2 (PCO

ndence of w
tures is softe

ound and dyn
014. 

___________

107

s an anthrop
material) at sa
O3

- from samp
arge areas, a
terial (Kolay,
dwater HCO

genic source
compared to g

Si F
C

of groundwat
w HCO3

- conc
ating into the
Lower groun
poorly perm

s are lower d
 rich in alumo

groundwate
e clastic sed
water contain
ed groundwa
ts the relation

water at highe
des. This is d

O2), and shor
water hardnes
er than spring

namics of gro

___________

7 

pogenic influ
ampling locat
pling location
and the soil ty
 2007). The

O3
- and Ca2

e (squares) (
geogenic sou

Figure 136: T
Ca2+ concen

ter HCO3
- ca

centration, wh
e aquifer, low
ndwater HCO

meable rocks 
due to slow 
osilicates are

r HCO3
- conc

dimentary, ign
ns less disso
ater is HCO3

-

n between H
er altitudes h
due to thinne
rt residence t
ss of karstic 

g water at hig

oundwater in 

___________

ence on the
tions Strahin
ns Vt-1 Tinsk
ype rendzina

e graph belo
2+ concentra
(lime, fertilize
urce (circle). 

The highest 
trations 

n be lower d
hich can flow
wer temperat
O3

- concentr
of silicate 
silicate wea

e produced (S

centration an
neous and m
olved HCO3

-

- which is als
HCO3

- concen
has less diss
er (or non-ex
time (surface
springs in S

gher tempera

Slovenia. 

___________

e groundwate
nec, Vidovič, 
ko and Ščeta
a. This soil co
w (Fig. 136)

ations. Data 
ers, construc
 

groundwate

ue to various
w long distanc
tures, thin (o
rations were
composition 

athering whe
Singhal and 

nd pH values
metamorphic 
- at lower pH
o the prevale

ntration in gro
solved bicarb
xistent) soil 

e runoff). Gam
Slovenia. He 
atures which i

___________

er is observe
and Padišča

ar is geogen
ontains a gre
) presents th

suggest th
ction materia

er HCO3
- and

s reasons: du
ces as surfac
r non-existen

e measured 
(igneous an

re cations lik
Gupta, 1999

. Groundwat
rocks devia

H. Graph als
ent compone
oundwater an
bonate (HCO
layer which 

ms (1974) als
observed th

is harder.  

__ 

ed 
ak. 
ic, 

eat 
he 

hat 
al) 

d 

ue 
ce 
nt) 
in 

nd 
ke 

9). 

ter 
ate 
so 

ent 
nd 
3
-) 
is 

so 
hat 



Mezga, K.: N
Ph.D. Thesi
__________

 

Figure 137:
versus pH v

 
Groundwate
HCO3

- is th
calculated m
recharge ar
where good
concentratio
residence ti
temperature
from the so
Brestovica d
lower due to
vegetation c
with broadle
2005), which
 

Figure 139:
concentrati
 
Aquifer por
 
Groundwate
significantly 
minerals in 
water. 

Natural hydro
is. University 
___________

: Scatter plo
values 

er correlation
he major an
mean air tem
reas of carbo
d positive c
ons are obse
me. High gro

es, thicker so
il is more in
deviate from 
o high temp
cover left from
eaved specie
h causes dep

: Scatter plo
ion versus E

rosity type 

er HCO3
- con

lower (p<0.0
the recharge

ochemical ba
y of Nova Gor
___________

ot of groundw

 between HC
ion in Slove
perature (Fig
onates (lime
correlation i

erved at lowe
oundwater H
oil layer (incre
tense and th
this line. Th
eratures, sm
m the destru
es, and Euro
pletion in soil

ot of groundw
EC 

 

ncentrations 
05) compare
e areas of po

ackground an
rica, 2014. 
__________

water HCO3
-

CO3
- and EC 

enian ground
g. 140) has b
estone preva
is observed 

er air tempera
HCO3

- concen
eased biopro
he surface fl
eoretically g

mall precipita
uction from fi
opean black p
l CO2. 

water HCO3
-

Fig. 141, A
ed to aquifers
oorly permea

nd dynamics 

___________

108 

- Figure 13
concentr
recharge

is strong (rs=
dwaters. Ass
been observe
ailing, dolomi

(y=0.183x0

atures due to
ntrations are
oductivity), a
ow is slowe
roundwater H
tion rate (su
re (destroye
pine forests)

- Figure 
versus 

Appendix 13I)
s with other 
able rocks ar

of groundwa

___________

38: Scatter p
ration versus
e area 

=0.92, p<0.0
sociation be
ed only betw
ite prevailing

0.6706, R=0.75
o elevated re
 observed in
nd lower altit
r. Groundwa
HCO3

- conce
ummer droug
d forest vege
 (PGD Kome

140: Ground
mean air te

) in the aqu
porosity type

re present, a

ater in Sloven

___________

plot of groun
s mean altit

05) (Fig. 139)
etween groun
ween groundw
g, and carbo
5). Lower g

echarge area
n the recharg
tudes, where

aters from sa
entration sho
ght) and thin
etation like c
en, 2003; Mu

dwater HCO
emperature o

ifers with fra
es. This is b

and also due

nia. 

___________

ndwater HCO
tude of 

) which confir
ndwater HCO
water sample
onates with c
groundwater 

a, low PCO2 an
ge areas with
e mineral dis
ampling locat
uld be highe

n soil layer w
coppice, shru
uhič, 2005; K

O3
- concentra

of recharge 

actured poro
because less 
e to surface r

______ 

 
O3

- 

rms that 
O3

- and 
ed in the 
clastics) 

HCO3
- 

nd short 
h higher 
ssolution 
tion B-9 

er, but is 
with little 
ub lands 
Košiček, 

ation 
area 

osity are 
 soluble 
runoff of 



Mezga, K.: Natural hydrochemical background and dynamics of groundwater in Slovenia. 
Ph.D. Thesis. University of Nova Gorica, 2014. 
____________________________________________________________________________________ 

109 
 

 Median 
 25%-75% 
 Non-Outlier Range 
 Outliers

A B C D E
0

100

200

300

400

500

600

H
C

O
3-  (

m
g

/L
)

A = intergranular porosity (n=39) 
B = fractured porosity (n=26) 
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D = karstic and fractured porosity 
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Figure 141: Box and whisker plots for groundwater HCO3
- concentration in the recharge area of 

prevailing aquifer porosity type 
 
Land cover/use 
 
The highest groundwater HCO3

- concentrations are measured in the recharge areas of non-irrigated 
arable land, complex cultivation patterns, land principally occupied by agriculture, with significant areas of 
natural vegetation, and industrial or commercial units, which suggest possible anthropogenic influence 
(lime, fertilizers, construction material) on sampled groundwater (Figs. 142 and 143, Appendix 13I). 
Groundwater HCO3

- concentrations in the recharge areas with industrial or commercial units and complex 
cultivation patterns are significantly higher (p<0.05) compared to recharge areas with bare rocks, moors 
and heathland, where the lowest HCO3

- concentrations are measured. 
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A = bare rocks (n=8)  
B = moors and heathland(n=2) 
C= natural grasslands (n=2) 
D = coniferous forest (n=20) 
E = broad-leaved forest (n=45) 
F = mixed forest (n=56) 
G = non-irrigated arable land 
(n=10) 
H = complex cultivation patterns 
(n=18) 
I = land principally occupied by 
agriculture, with significant areas 
of natural vegetation (n=10) 
J = industrial or commercial units 
(n=2) 

Figure 142: Box and whisker plots for groundwater HCO3
- concentration in the recharge area of 

prevailing land use type (CORINE Land Cover) 
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A = forest (n=137) 
B = areas of less intense use of 
nutrients and plant protection 
products (n=18) 
C = areas of intense use of nutrients 
and plant protection products (n=16) 
D = urban areas (n=2) 

Figure 143: Box and whisker plots for groundwater HCO3
- concentration in the recharge area of 

prevailing land use type (Actual agricultural and forest land usage) 
 
Sampling object type 
 
The highest groundwater HCO3

- concentrations are observed in water from private wells (Fig. 144, 
Appendix 13I) suggesting the carbonate origin of minerals in the recharge areas, high initial CO2 

(atmospheric and soil) content, and the influence of anthropogenic factors (due to vicinity of agricultural 
land) by lime application or other fertilizers. The lowest groundwater HCO3

- concentrations are measured 
in the surface waters due to low level of dissolved constituents in groundwater in high mountain regions, 
and degassing of soil CO2, which may be gradually released to the atmosphere as the water equilibrates 
with the atmospheric concentration of CO2 (the outgassing effect) (De Vos et al., 2006; Giesler et al., 
2013). 
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A = pumping station (n=36) 
B = borehole (n=10) 
C = private well (n=8) 
D = spring capture (n=44) 
E = spring (n=58) 
F = surface water (n=18) 

Figure 144: Box and whisker plots for groundwater HCO3
- concentration according to sampling 

object type 
 
 



Mezga, K.: Natural hydrochemical background and dynamics of groundwater in Slovenia. 
Ph.D. Thesis. University of Nova Gorica, 2014. 
____________________________________________________________________________________ 

111 
 

Spatial distribution of groundwater HCO3
- 

 
High groundwater HCO3

- concentrations are observed in the recharge areas of carbonates, and clastic 
sedimentary rocks in the NE, central, and SE part of the country (Fig. 145). In those recharge areas rock 
minerals or cement are rich in carbonates, and higher CO2 partial pressures induced by higher mean air 
temperature, thicker soil layer, and more extensive vegetation cover influence greatly the mineral 
dissolution. Low groundwater HCO3

- concentrations are observed in the northern band of the country 
extending from W-E part and have carbonate, metamorphic and igneous rocks, and clastics rocks in the 
recharge areas. Low groundwater HCO3

- concentrations are also observed in deep aquifers in NE part of 
study area. Groundwater from the high mountain regions with mostly carbonate rocks in the recharge 
areas has low HCO3

- concentrations. This is due to very thin (or non-existent) soil layer, very poor 
vegetation cover (low level of respiration of soil organisms and the decay of organic matter and therefore 
low soil CO2), low temperatures and consequently low PCO2, surface runoff during snow melting, and also 
because most sampling locations in high mountains are springs, which discharge responds primarily to 
snowmelt runoff. Snowfall is common for most of the country, with the exception of the lowlands in the 
coastal region. From late autumn to early spring it is frequent in interior low-lying areas, while during 
summer it is only present in isolated parts of mountains. Snow cover duration mostly depends on fresh 
snow accumulations, air temperature and sunshine (EARS, 2006), therefore snow coverage map is very 
similar to mean annual precipitation and temperature maps.  

 
Figure 145: Spatial distribution of groundwater HCO3

-  
 
 
4.6.1.4.1. Water hardness (CaCO3) in Slovenian groundwaters 

 
Because alkalinity is reported in several ways the presented description of groundwater mineralization 
(CaCO3) is not considered as individual paramaterer. Instead, CaCO3 provides the general information on 
water hardness in Slovenian groundwaters.    
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Descriptive statistics of groundwater CaCO3 
 
Groundwater CaCO3 varies between 0.1 and 5.4 mmol/L, with mean value of 2.0 mmol/L and median 
2.0 mmol/L (Tab. 29). Based on the histogram (Fig. 146) the groundwater CaCO3 concentration is not 
normally distributed, and values higher than 4.1 mmol/L presents the outliers (sampling locations Vidovič 
and Strahinec) (Fig. 147). 
 
Table 29: Descriptive statistics of groundwater CaCO3 (mmol/L)  

Parameter n X Md Min Max S 

CaCO3 (mmol/L) 175 2.0 2.0 0.1 5.4 1.0 
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Figure 146: Histogram for groundwater CaCO3 
concentration (mmol/L) (n=175) 

Figure 147: Box and whisker plot for 
groundwater CaCO3 concentration 
(mmol/L) (n=175) 

 
Rock type  
 
Soft groundwater is observed mostly in the recharge areas of less permeable igneous and metamorphic 
rocks (Fig. 148, Appendix 13J), which is significantly softer (p<0.05) compared to medium hard 
groundwater in the recharge areas with carbonate rocks and hard groundwater in clastic sedimentary 
rocks. 
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A = clastic sedimentary rocks (n=53) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic  
rocks (n=12) 

Figure 148: Box and whisker plots for groundwater CaCO3 concentration in the recharge area of 
major rock types 
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Soft groundwater (Figs. 149 and 150, Appendix 13J) is observed in the recharge areas with less 
permeable rocks like igneous and metamorphic rocks where groundwater is significantly softer (p<0.05) 
compared to medium hard and hard groundwater observed in the recharge areas with limestone 
prevailing, dolomite prevailing, flysch rocks, carbonates with clastics, and gravel and sand (and clay). 
Additionally, soft groundwater in the recharge areas with shale and sandstone is significantly softer 
(p<0.05) compared to groundwater in the recharge areas with dolomite prevailing, flysch rocks, 
carbonates with clastics, and gravel and sand (and clay). Groundwater is soft due to the lack of carbonate 
minerals in their recharge areas. Namely, these rocks are poorly permeable, resistant to erosion, can 
generate surface runoff, and have therefore short water residence time (especially if located at higher 
altitudes). According to lithostratigraphic classification groundwater in recharge areas with Oligocene 
igneous rocks, Permian Val Gardena layers, and old Paleozoic rocks is significalnty softer (p<0.05) 
compared to recharge areas in Eocene flysch rocks, Cretaceous carbonates, Quaternary clastics 
(medium- and coarse-grained), Miocene Lithothamnium  limestone, and Miocene clastics. Medium hard 
groundwater was sampled in the recharge area of Triassic carbonates, Cretaceous carbonates (outlier P-1 
Pliskovica), and Eocene flysch rocks. Groundwater in carbonate recharge areas at higher altitudes is 
softer compared to groundwater sampled in Dinaric Karst. This is due to higher air temperatures at lower 
altitudes, and higher soil CO2, and therefore increased dissolution of calcium- and magnesium-rich 
minerals in aquifers rocks. Hard groundwater was sampled in the recharge area of Lithothamnium 
limestone, Quaternary clastics (medium- and coarse-grained), Pliocene clastics, and Miocene clastics 
where groundwater hardness in the recharge areas with Miocene clastics is significantly harder (p<0.05) 
compared to recharge areas in other lithological units.  
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A = flysch rocks (n=7) 
B = clay (n=2) 
C = gravel and sand (n=26) 
D = gravel, sand and clay (n=11) 
E = shale and sandstone (n=7) 
F = limestone prevailing (n=74) 
G = dolomite prevailing (n=30) 
H = carbonates with clastics (n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 

Figure 149: Box and whisker plots for groundwater CaCO3 concentration in the recharge area of 
prevailing lithological unit 
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A = old Paleozoic rocks (n=4) 
B = Carboniferous-Permian beds 
(n=5)   
C = Permian Val Gardena layers 
(n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates (n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics (medium- 
and coarse-grained) (n=26) 

Figure 150: Box and whisker plots for groundwater CaCO3 concentration in the recharge area of 
prevailing lithostratigraphic unit 
 
Aquifer porosity type 
 
Soft groundwater is present in the aquifers with fractured porosity (Fig. 151, Appendix 13J) which is 
significantly softer (p<0.05) compared to groundwater with karstic and fractured porosity, mixed porosity 
(karstic, fractured, intergranular), and fractured and karstic porosity. An outlier (Padiščak) is located near 
the vicinity of the coast and is influenced by anthropogenic activity (lime application). Medium hard 
groundwater is observed in aquifers with both prevailing fractured or karstic porosity, and mixed porosity. 
Hard groundwater was sampled in aquifers with intergranular porosity where significantly harder (p<0.05) 
groundwater dominates compared to groundwater in aquifers with karstic and fractured porosity, mixed 
porosity (karstic, fractured, intergranular), and fractured porosity. As already mentioned, in Slovenian 
shallow alluvial intergranular aquifers carbonate pebbles and/or cement prevail and they are open to 
constant PCO2 supply. 
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A = intergranular porosity (n=39) 
B = fractured porosity (n=26) 
C = fractured and karstic porosity (n=30) 
D = karstic and fractured porosity (n=74) 
E = mixed porosity (karstic, fractured, 
intergranular) (n=6) 

Figure 151: Box and whisker plots for groundwater CaCO3 concentration in the recharge area of 
the prevailing aquifer porosity type 
 
Land cover/use 
 
Soft groundwater is observed in the recharge areas with moors and heathland, bare rocks, and coniferous 
forest (Figs. 152 and 153, Appendix 13J). These areas are located at higher altitudes where there is a 
constant flow of fresh and soft rain water, the soil layer is very thin or non-existent and consequently, very 
little vegetation is present (low level of respiration of soil organisms and the decay of organic matter), low 
temperatures, and consequently low PCO2, surface runoff during snow melting, and also because most 
sampling locations in high mountains are springs, which discharge responds primarily to snowmelt runoff. 
Medium hard groundwater is observed in the recharge areas with natural grasslands, mixed forest, and 
broad-leaved forest. Hard groundwater is observed mostly in the recharge area occupied by agriculture, 
with significant areas of natural vegetation, non-irrigated arable land, industrial or commercial units, and 
complex cultivation patterns. Groundwater in the recharge areas with industrial or commercial units, and 
complex cultivation patterns is significantly harder (p<0.05) compared to softer groundwater in the 
recharge areas with bare rocks, moors and heathland, and coniferous forest. Also hard is groundwater in 
the recharge areas with land principally occupied by agriculture, with significant areas of natural 
vegetation significantly higher (p<0.05) compared to bare rocks and moors and heathland. Medium hard 
and hard groundwater have mostly thicker soil layer in their recharge areas, and therefore increased 
microbiological activity and consequently greater PCO2, which increases solubility of minerals, and 
prolongs the residence time compared to groundwater in high mountain regions. 
 
According to Actual agricultural and forest land usage classification there are no significant differences in 
groundwater hardness.  
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A = bare rocks (n=8) 
B = moors and heathland (n=2) 
C= natural grasslands (n=2) 
D = coniferous forest (n=20) 
E = broad-leaved forest (n=45) 
F = mixed forest (n=56) 
G = non-irrigated arable land (n=10) 
H = complex cultivation patterns 
(n=18) 
I = land principally occupied by 
agriculture, with significant areas of 
natural vegetation (n=10) 
J = industrial or commercial units 
(n=2) 

Figure 152: Box and whisker plots for groundwater CaCO3 concentration in the recharge area of 
prevailing land use type (CORINE Land Cover) 
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A = forest (n=137) 
B = areas of less intense use of 
nutrients and plant protection 
products (n=18) 
C = areas of intense use of 
nutrients and plant protection 
products (n=16) 
D = urban areas (n=2) 

Figure 153: Box and whisker plots for groundwater CaCO3 concentration in the recharge area of 
prevailing land use type (Actual agricultural and forest land usage) 
 
Spatial distribution of groundwater CaCO3 
 
In Slovenia medium hard groundwater prevails. Its hardness is presented as molar concentration and in 
German degrees (Fig. 154 and 155). Medium hard groundwater is found mostly across whole country 
except in high mountain regions, and hard groundwater in the recharge areas of carbonate rocks and 
clastics in carbonate alluvial deposits in the NE, central, and SW part (gravel, sand (clay), and flysch 
rocks). Medium hard and hard groundwater contain more Ca2+, Mg2+ due to calcium- and magnesium-rich 
minerals in aquifers rocks, thick soil layer, increased microbiological activity and consequently greater 
PCO2, higher air temperatures, and lower altitudes of recharge areas, which increase dissolution of rock 
minerals. Soft water is mostly observed in the N band extending from W to NNE part of the country in the 
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recharge areas of carbonate rocks, metamorphic and igneous rocks, and clastics (including groundwater 
from deeper aquifers in NE). Groundwater from the high mountain regions (mostly carbonate rocks in 
recharge area) is softer due to very thin (or non-existent) soil layer and very little vegetation (low level of 
respiration of soil organisms and the decay of organic matter), low temperatures, and consequently low 
PCO2. Soft groundwater in the recharge areas of igneous and metamorphic rocks is low in Ca- and Mg-rich 
minerals (Mezga and Urbanc, in press).  

 
 

Figure 154: Spatial distribution of groundwater CaCO3 (mmol/L) 
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Figure 155: Spatial distribution of groundwater CaCO3 (°dH) 
 
 
4.6.1.5. Interpretation of initial soil CO2 partial pressure on the basis of groundwater 

HCO3
- concentration 

 
The aim of this section was to calculate the hypothetical soil CO2 partial pressure (PCO2) for sampled 
groundwater and to identify the openness of the aquifer systems in Slovenia. In order to calculate the 
initial soil PCO2 in sampled groundwater only 55 sampling locations (Fig. 156) were considered in which 
recharge areas carbonate rocks prevail (in 37 sampling locations limestone prevails, in 15 sampling 
locations dolomite prevails, and in 3 sampling locations carbonates with clastics).  
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Figure 156: Spatial distribution of selected sampling locations 
 
Due to prevailing carbonate rocks in the recharge areas in groundwater Ca2+ and Mg2+ are dominant 
cations and HCO3

- is the most abundant anion. Groundwater samples have either Ca2+-HCO3
- water type 

(50.9 %) where limestone prevails in the recharge area, or Ca2+-Mg2+-HCO3
- (48.2 %) water type where 

dolomite prevails or carbonates with clastics in the recharge area. One exception of Ca2+-Mg2+-HCO3
--

SO4
2- water type was observed.   

 
Schoeller diagram (Fig. 157) presents the major ion analyses (in meq/l) and different hydrochemical water 
types. The Piper diagram (Fig. 158) presents the distribution of sampled groundwaters. Groundwater from 
sampling location Mošenik deviates according to SO4

2- concentration, and groundwater Ca2+ and Mg2+ 
concentration differ according to prevailing rock type in the recharge area, e.g. limestone or dolomite. In 
all water samples the dominant anion is HCO3

- with its mean concentration of 273.8 mg/L, minimum 72 
mg/L and maximum of 471 mg/L.  
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Figure 169: Distribution lines for open and closed systems, and measured data 
 
Comparison between calculated data for soil PCO2 for open and closed systems and measured data from 
Slovenia (Fig. 170) shows that calculated data for soil PCO2 for open systems coinside with measured data 
from Slovenia. Additionaly calculated data for soil PCO2 for closed systems are significantly higher (p<0.05) 
compared to open system and measured data. 
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Figure 170: Box and whisker plots for soil PCO2 concentration for 
open and closed systems, and measured data 
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recharge areas of sampling locations Savica, Soča, Gljun, Zadlaščica, Kamniška Bistrica, and Mošenik). 
Groundwater in these areas has usually low initial soil CO2 partial pressure most possible due to higher 
relative portion of atmospheric CO2. High calculated initial soil PCO2 concentration (>3 vol. %) is observed 
in the E part of Slovenia at 3 sampling locations (Vt-1 Tinsko, TR-1 Trebelno, and Ščetar). Their recharge 
areas at lower altitudes are covered by thick soil layers of rendzina and brown soils which is developed on 
the carbonate rocks. These areas are mostly covered with deciduous or mixed forests. High 
concentrations of soil PCO2 are possible due to various reasons. The content of some measured 
groundwater ions (Mg2+ and SO4

2-) from sampling location Vt-1 Tinsko is higher compared to other 
groundwater (increased mineralization). The pump in this pumping well is placed in the layer of crushed 
coal between sand with clay, organic clay, and silt clay is present. Due to increased groundwater SO4

2- 
concentration the higher values of groundwater CO2 could be derived from coal layer. Another possible 
explanation could also be due to the fact that those sampling locations are located near Podčetrtek, and 
Šmarješke toplice. Namely, eastern Slovenia is rich in mineral and thermal groundwater. On the E side of 
the study area, in the intersection of deep fault zones of the carbonate aquifers with fractured porosity, the 
low temperature thermal water can be found (Lapanje and Rman, 2009). It is possible that the CO2 from 
deeper depths which mineralizes groundwater and increases the carbonate content, is also influencing 
groundwater in the shallow aquifers in those sampling sites. 
 

 
Figure 174: Spatial distribution of hypothetical soil PCO2 concentration in groundwater in the 
recharge areas with carbonate rocks 
 
Figure 175 presents the relation between soil PCO2 concentration and mean altitude of recharge areas. 
The lowest soil PCO2 concentration is observed mostly in high mountain regions, and the high soil PCO2 
concentration at lowland areas (plains) of the country. Additionally, the lowest soil PCO2 concentrations in 
groundwater were observed mostly in groundwater which is in contact with prevailing limestone, whereas 
the highest groundwater concentrations occurred where dolomites prevail.  
 
Since the altitude and the mean air temperatures are closely related, correlation between the soil PCO2 
concentration and mean temperature of recharge areas is expected (Fig. 176). The lowest soil PCO2 
concentrations are observed in areas with lower temperature, which is mostly observed in the high 
mountain areas. The highest soil PCO2 concentrations are observed in areas where higher temperature 
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Rock type  
 
Groundwater DIC is significantly depleted in 13C (p<0.05) (δ13C-DIC ~ -18.0 ‰) in the recharge areas of 
silicate igneous and metamorphic rocks (Fig. 179, Appendix 13L) compared to clastic sedimentary and 
carbonate rocks. The soil CO2 contributes the largest share to groundwater DIC due to intense 
biochemical processes (organic matter degradation) in thick soil layers, as well as absence of carbonate 
minerals. Enriched in 13C (δ13C-DIC ~ > -12.0 ‰) is groundwater in the recharge areas of carbonate and 
clastic sedimentary rocks. Those groundwater δ13C-DIC values suggest the dissolution of carbonate rocks 
in the reaction with biogenic CO2 in soil.  
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C = igneous and metamorphic 
rocks (n=12) 
 

Figure 179: Box and whisker plots for groundwater δ13C-DIC values in the recharge area of 
major rock types 
 
Groundwater DIC is enriched with 13C in the recharge areas with shale and sandstone and limestone 
prevailing (Figs. 180 and 181, Appendix 13L). This water is most probably under the influence of 
dissolution of carbonate rocks and atmospheric CO2 (degassing), since groundwater was sampled as a 
surface water. According to groundwater in the recharge areas with carbonate rocks (Triassic, Jurassic, 
and Cretaceous carbonates, and Lithothamnium limestone) the most enriched in 13C is groundwater with 
Triassic and Jurassic carbonates in the recharge areas. Groundwater in Triassic carbonates is more 
enriched due to recharge areas in higher altitudes (above the tree line), greater influence of dissolution of 
carbonates, higher share of atmospheric CO2, and lesser share of organic CO2 from soil. Important is also 
precipitation rate which dilutes the groundwater (Fig. 182) and lower contribution of biological CO2 from 
the soil. Additionally, there is also a possibility for isotopic exchange with the atmospheric CO2 due to 
openness of karstic channels. Groundwater is significantly depleted in 13C-DIC (p<0.05) in the recharge 
area of poorly permeable rocks (old Paleozoic rocks, Permian Val Gardena layers, and Oligocene igneous 
rocks) compared to groundwater in the recharge areas with Carboniferous-Permian sands and 
sandstones. These rocks contain mostly silicate minerals and are poor in carbonate-rich minerals, so the 
majority of carbon is derived from soil CO2 in thick horizon.  
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G = dolomite prevailing (n=30) 
H = carbonates with clastics (n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 
 

Figure 180: Box and whisker plots for groundwater δ13C-DIC values in the recharge area of 
prevailing lithological unit 
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A = old Paleozoic rocks (n=4)  
B = Carboniferous-Permian beds (n=5) 
C = Permian Val Gardena layers (n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates (n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium limestone 
(n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics (medium- and 
coarse-grained) (n=26) 

Figure 181: Box and whisker plots for groundwater δ13C-DIC values in the recharge area of 
prevailing lithostratigraphic unit 
 
Moderate correlation is observed between mean amount of precipitation and groundwater δ13C-DIC 
(rs=0.52, p<0.05) (Fig. 182) where the amount of precipitation also influences the groundwater isotopic 
composition by groundwater dilution especially in the high mountain regions in the W part of the country 
where increased precipitation are typical. Figure 183 shows moderate correlation between groundwater Si 
and δ13C-DIC (rs=0.57, p<0.05) suggesting that groundwater is more enriched in 13C-DIC in the recharge 
areas of carbonate rocks, whereas it is more depleted in 13C-DIC in the recharge areas of prevailing 
silicate rocks. The reason is absence of soil thickness and vegetation density in the recharge areas of 
carbonate rocks in the high mountain recharge areas where greater atmospheric CO2 is present, 
compared to groundwater in the recharge areas of silicate rocks with prevailing soil CO2 from organic 
matter degradation and microbiological respiration.  
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A = intergranular porosity (n=39) 
B = fractured porosity (n=24) 
C = fractured and karstic 
porosity (n=30) 
D = karstic and fractured 
porosity (n=74) 
E = mixed porosity (karstic, 
fractured, intergranular) (n=6) 

Figure 186: Box and whisker plots for groundwater δ13C-DIC values in the recharge area of 
prevailing aquifer porosity type 
 
Isotopic mass balance calculations 
 
A simple isotopic mass balance calculation (Katz, 1998) was performed in order to quantify different 
sources of DIC in sampled groundwater. The major inputs to the DIC in groundwater are following 
processes: the exchange with the atmospheric CO2, soil CO2 (degradation of organic matter), and 
dissolution of carbonate minerals. All calculations were performed by using the hydrogeochemical 
software PHREEQC v. 2 (Parkhurst and Appelo, 1999), using the wateqf4.dat database.  
 
For input data a simple solution (rain water) was predicted which is (1) in equilibrium with atmospheric 
CO2, and (2) in equilibrium with CO2 which correspond the sampled groundwater’s HCO3

- concentration 
both considered as an open system. Detailed description is found in the Appendix 11L.  
 
The molality of total carbon concentration (DICtot) was calculated which equals the DICatm concentration. 
As a references for further calculations the δ13CCaCO3 of 0 ‰ (Pezdič, 1999; Appelo and Postma, 2005), 
δ13Corg of -22.0 ‰ (Urbanc, 1993), and δ13Catm of -7.0 ‰ (Appelo and Postma, 2005) were considered. 
Selected references only serve to demonstrate a calculation of a simple isotopic mass balance calculation. 
Actual initial values can strongly deviate locally since they depend on the geology, altitude, soil thickness 
and many more. The aim was to assess the indicative share and ratio between DICcarb, DICatm, and DICorg 
in groundwater according to groundwater with recharge areas in high mountains and lowlands. Those 
values only serve as a rough approximation which can help to provide additional information on 
groundwater chemical and isotopic composition and processes. 
 
δ13Ctot = stable carbon isotope ratio of total dissolved inorganic carbon 
DICtot = total dissolved carbon concentration 
δ13Ccarb = stable carbon isotope ratio of carbonate rock 
DIC carb = dissolved inorganic carbon from dissolution of carbonate rocks  
δ13Corg = stable carbon isotope ratio of soil CO2 
DICorg = dissolved inorganic carbon from organic matter 
δ13Catm = stable carbon isotope ratio of atmosphere 
DICatm = atmospheric concentration 
 
In the second step the initial CO2(g) value was calculated from the measured alkalinity of HCO3

- of 
groundwater samples (example for sampling location Soča). The dissolved inorganic carbon from organic 
matter (DICorg) was calculated as: 
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f(DICorg) = f(DICtot) – f(DICcarb) - f(DICatm)                      (27) 
 
The overall equation is:  
 

f(DICtot) = f(DICcarb) + f(DICorg) + f(DICatm) = 1                                                                                                                                             (28) 

 
f(δ13C-DIC*DICtot) = f(δ13C-DICcarb*DICcarb) + f(δ13DIC-DICorg*DICorg) + f(δ

13C-DICatm*DICatm)                            (29) 
 

A share (%) of molar proportion between calculated contribution of dissolution of carbonates, degradation 
of organic matter, and the atmosphere in groundwater from sampling location Soča is approx. 49 : 50 : 1. 
Results for other sampling locations are found in Table 31. 
 
Table 31: Calculated proportions of carbonate dissolution, organic matter, and the atmosphere for 
selected sampling locations 
 

Sampling location measured 
δ13C-DIC 

(‰) 

calculated 
δ13C-DICtot 

(‰) 

f(DICcarb) 
 

(%) 

f(DICorg) 

 
(%) 

f(DICatm) 

 
(%) 

Soča -1.0 -11.1 49 50 1 

Krka -13.2 -12.6 42 57 0 

Kamniška Bistrica -3.1 -11.2 49 51 1 

B-9 Brestovica -10.5 -12.2 45 56 0 
 
The share of dissolution of carbonates and degradation of organic material are similar to shares 
calculated by Kanduč et al. (2013) for Kamniška Bistrica surface water, and Zavadlav et al. (2013) for Krka 
River surface water, taking into account their calculations are based on chemical and isotopic calculations 
of surface waters of those springs, where the outgassing of CO2 was considered and the tributary inputs.    
 
The comparison between measured and calculated groundwater total δ13C-DIC values concerning 
groundwater from sampling locations Krka and B-9 Brestovica (recharge areas of lower altitudes) shows 
similar values. But measured groundwater total δ13C-DIC values from sampling locations Kamniška 
Bistrica and Soča (recharge areas at higher altitudes) are much more positive compared to calculated 
values. It is believed that groundwater from those sampling locations is influenced by 2 additional isotopic 
effects because of recharge areas of higher altitudes (Fig. 187): (1) isotopic effect of initial organic CO2, 
and (2) isotopic effect of exchanging carbon with the atmosphere. According to Urbanc (1993), soil CO2 

which is mostly derived from the atmosphere, is enriched in 13C by decreasing the soil temperature and 
increasing the altitudes, respectively. A certain influence at higher altitudes could be also induced by the 
changes of vegetation cover with a greater proportion of grasses which have more positive δ13C-DIC 
values. Based on those two mechanisms the soil CO2 does not contain δ13C -22.0 ‰ like it has been 
considered for modelling, but its initial isotopic composition of organic carbon is more positive. In high 
karstic regions the karstic channels are less filled with weathered debris. This means that greater 
possibilities of groundwater isotopic exchanges exist between carbon from HCO3

- and carbon from the 
atmosphere during groundwater flow towards spring. Carbon isotope exchange between air and HCO3

- 
can be also carried out at springs if groundwater acts as retention in ponds.  
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Figure 187: Carbon isotope fractionation between the species of the carbonate system as a 
function of temperature with respect to HCO3

-. Values according to Mook (1986) and Zhang et al., 
(1995) are indicated by solid and dashed lines, respectively (Zeebe and Wolf-Gladrow, 2001). 
 
 
Sources of DIC in groundwater  
 
Groundwater δ13C-DIC values can help to decipher the contributions of organic matter decomposition, 
carbonate mineral dissolution, and equilibration with atmospheric CO2 to the DIC. Figure 197 shows δ13C-
DIC versus HCO3

- and 4 lines which indicate the processes in groundwater. First (red) line indicates an 
open-system equilibration of DIC with soil CO2 originating from degradation of organic matter with δ13Corg 
(-25 ‰) which is enriched by 9 ‰ with corresponding value of -16 ‰ according to Mook et al. (1974). Non-
equilibrium dissolution of carbonates with one part (50 %) of DIC originating from soil CO2 (- 25 ‰), and 
the other (50 %) from carbonates with a mean value of δ13CCa (0 ‰) produces an intermediate δ13C-DIC 
value of -12.5 % (yellow line). Blue line indicates dissolution of carbonate rocks without considering any 
isotope fractionation. Given the isotopic composition of atmospheric CO2 (-7 ‰) and the equilibration 
fractionation with DIC of +9 ‰, DIC in equilibrium with the atmosphere should have a δ13CDIC of about +2 
‰ (green line). Other fractionation factors were not considered in this study (e.g. exchange with the 
atmospheric CO2, diffusion of CO2 in the soil, carbonate dissolution, CO2 outgassing in surface waters, 
and so on). 
 
Groundwater δ13C-DIC in the recharge area of high mountain carbonate rocks is mostly controlled by the 
geological composition (carbonate dissolution) and atmospheric CO2 which is evident from more positive 
δ13C-DIC values and lower alkalinity. In the lowland carbonate-bearing recharge area the alkalinity is 
higher and the groundwater is more influenced by the degradation of organic matter and leaching from soil 
layer, which is suggested by more negative δ13C-DIC values. In the recharge areas of silicate and less 
permeable/impermeable rocks at higher altitudes the alkalinity is low and the biochemical process of 
degradation of organic matter and leaching from soil layer dominate (Pevčevo, Framski slap, and Godec), 
as it has been observed by Clark and Fritz (1997), Redondo and Yélamos (2005), Shin et al. (2011), and 
others. Igneous and metamorphic rocks make up two larger groups (Fig. 188). This could be due to soil 
CO2, elevation differences, mineralogical composition of rocks in the recharge areas, or due to degassing 
or exchange with atmospheric CO2 (when groundwater is sampled as surface water). In the recharge 
areas of shale and sandstone the alkalinity is low but groundwater is enriched in 13C due to influence of 
surface water photosynthesis (Zavadlav et al., 2013), or due to the outgassing of CO2 (Kanduč et al., 
2007). In the NE part of Slovenia, where gravel, sand (and clay) prevail in the recharge area, the HCO3

- 

concentration in higher, and the δ13C-DIC in groundwater is higher which might be due to dissolution of 
small proportion of carbonate minerals. The alkalinity is increasing with increasing share of carbonates in 
the rocks in the recharge area.   
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A = bare rocks (n=8) 
B = moors and heathland (n=2) 
C= natural grasslands (n=2) 
D = coniferous forest (n=20) 
E = broad-leaved forest (n=44) 
F = mixed forest (n=55) 
G = non-irrigated arable land 
(n=10) 
H = complex cultivation patterns 
(n=18) 
I = land principally occupied by 
agriculture, with significant areas 
of natural vegetation (n=10) 
J = industrial or commercial units 
(n=10) 

Figure 189: Box and whisker plots for groundwater δ13C-DIC values according to prevailing land 
use type (CORINE Land Cover) 
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A = forest (n=135) 
B = areas of less intense use 
of nutrients and plant 
protection products (n=18) 
C = areas of intense use of 
nutrients and plant protection 
products (n=16) 
D = urban areas (n=2) 
 

Figure 190: Box and whisker plots for groundwater δ13C-DIC values according to prevailing land 
use type (Actual agricultural and forest land usage)  
 
Sampling object type 
 
Water sampled as surface water (Fig. 191) is significantly enriched in 13C-DIC (p<0.05) possible due to 
degassing of CO2 from groundwater which causes loss of DIC (decrease in alkalinity) and enrichment of 
DIC in 13C (Doctor et al., 2008; Shin et al., 2011). In surface water photosynthesis could be present which 
preferentially selects lighter isotope (12C) leaving the remaining DIC enriched in 13C (more positive values) 
(Shin et al., 2011; Schulte et al., 2011).  
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A = pumping station (n=35) 
B = borehole (n=10) 
C = private well (n=8) 
D = spring capture (n=44) 
E = spring (n=58) 
F = surface water (n=18) 

Figure 191: Box and whisker plots for groundwater δ13C-DIC according to sampling object type  
 
Spatial distribution of groundwater δ13C-DIC  
 
Spatial distribution of groundwater δ13C-DIC values resembles the spatial distribution of groundwater 
carbonate equilibria parameters, like Ca2+, HCO3

-, PCO2, and CaCO3. Namely, the groundwater that 
originates in alpine karstic areas in high mountains (Julian Alps, Karavanke Mts., and Kamnik-Savinja 
Alps) is enriched in 13C and is more alkaline (Fig. 192). This is due to the dissolution of carbonate rocks, 
greater relative contribution of atmospheric CO2, thin (or non-existent) soil layer, and consequently low 
microbiological activities/organic matter degradation in the recharge areas. The soil horizon at the higher 
elevations in Slovenia can be very thin due to sloping surfaces and steep inclinations (Repe, 2004). This 
limits the biological activity and decreases the production of soil CO2 where temperature and amount of 
precipitation play an important role (Leifeld and Fuhrer, 2005). At 2,500 m a.s.l. there is a reduction in 
pressure of almost 25 % compared to lowlands. Consequently, less CO2 is available for dissolution in 
precipitation and surface runoff in high mountains (Bader and Kunz, 2000). At lower elevations the 
quantity of organic matter is increasing, and humus is being formed by the annual decay of plants roots 
and debris (Cocos, 1997). Namely, the tree roots contribute to the weathering of parent rock, and 
channels resulting from roots decay are improving the circulation of air and water within the soil (Cocos, 
1997).  
 
According to groundwater saturation indices of calcite (SIcal), groundwater from high mountains recharge 
areas with carbonate rocks has SIcal around 0 (Fig. 193, IV.), whereas groundwater from the recharge 
areas with igneous and metamorphic rocks (Fig. 193 I.), clastites from the NE part of Slovenia (Fig. 193, 
III.), and shale and sandstone (Fig. 193, II.) is undersaturated with respect to calcite.  
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Figure 194: Spatial distribution of groundwater δ13C-DIC values 
 
 
4.6.2.  Groundwater chemistry of silicate weathering 
 
4.6.2.1. Silicon (Si) in Slovenian groundwaters 
 
 Descriptive statistics of groundwater Si  
 
Mean groundwater Si concentration is 3.18 mg/L, median 1.85 mg/L, maximum 13.44 mg/L, and minimum 
0.17 mg/L (Tab. 32). Groundwater Si is not normally distributed (Fig. 195) and concentrations higher than 
9.07 mg/L present outliers (Fig. 196) which are found at sampling locations Maver, BLP-2 Nedelica, V-3A 
Lukavci, DEV-1 Desenci, GRAD-1 Grad, and VP-1 Prosenjakovi, all located in the NE part of Slovenia. 
The analytical uncertainty for groundwater Si is between 15 and 30 %.  
 
Table 32: Descriptive statistics of groundwater Si concentration 
Parameter n X Md Min Max S 

Si (mg/L) 174 3.18 1.85 0.17 13.44 3.03 
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Figure 195: Histogram for groundwater Si
concentration (n=174) 

Figure 196: Box and whisker plot for 
groundwater Si concentration (n=174). 

 
Rock type  
 
Groundwater Si concentration is high in the recharge areas with clastic sedimentary and igneous and 
metamorphic rocks (Fig. 197, Appendix 13M) due to weathering of silicate minerals. Carbonate rocks are 
poor in silicate minerals, therefore the concentration of Si in this groundwater is significantly lower 
(p<0.05) compared to other two groups. Outliers in carbonate rocks are found at sampling locations Trate, 
Ščetar, Mazej, and TR-1 Trebelno.  
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A = clastic sedimentary rocks (n=46) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic rocks 
(n=12) 
 

Figure 197: Box and whisker plots for groundwater Si concentration in the recharge area of major 
rock types 

The highest groundwater Si concentration is observed in the recharge areas of Oligocene clay “sivica” 
(two groundwater samples) (Figs. 198 and 199, Appendix 11M) and Pliocene gravel, sand and clay where 
groundwater Si concentration is significanty higher (p<0.05) compared to recharge areas with all other 
lithostratigraphic units except old Paleozoic rocks. This is due to silicate weathering of phyllosilicates 
(illite/muscovite, chlorite and montmorillonite) (Kralj and Mišič, 2003) and longer residence time in deep 
aquifers (Kralj, 2003). Medium groundwater Si concentrations are observed in Eocene flysch rocks, 
Permian Val Gardena layers, shale and sandstone of Carboniferous-Permian beds, Miocene and 
Quaternary clastics, Ladinian and Oligocene igneous rocks, and metamorphic Paleozoic rocks which 
sources of Si are in silicate minerals. The lowest groundwater Si concentration measured in the recharge 
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area of Jurassic, Cretaceous, and Triassic carbonates is significantly lower (p<0.05) compared to Eocene 
flysch rocks, Permian Val Gardena layers, Quaternary clastics (medium- and coarse-grained), Ladinian 
igneous rocks, Miocene clastics, Oligocene igneous rocks, Pliocene clastics, Oligocene clay “sivica”, and 
and old Paleozoic rocks.  
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A = flysch rocks (n=7) 
B = clay (n=2) 
C = gravel and sand (n=26) 
D = gravel, sand and clay (n=4) 
E = shale and sandstone (n=7) 
F = limestone prevailing (n=74) 
G = dolomite prevailing (n=30) 
H = carbonates with clastics (n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 
 

Figure 198: Box and whisker plots for groundwater Si concentration in the recharge area of 
prevailing lithological unit 
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A = old Paleozoic rocks (n=4) 
B = Carboniferous-Permian beds 
(n=4) 
C = Permian Val Gardena layers 
(n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates 
(n=28) 
H = Eocene flysch rocks (n=6) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium 
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=8) 
N = Quaternary clastics (medium- 
and coarse-grained) (n=28) 

Figure 199: Box and whisker plots for groundwater Si concentration in the recharge areas of 
prevailing lithostratigraphic unit 

In the NE part of the country increased groundwater Si concentrations are observed not only in waters 
from from shallow aquifers (Mursko polje) but also from deep aquifers (Goričko). Also increased Si 
concentrations are observed on Pohorje Mt. and at sampling locations Maver and Godec, all located in the 
NNE part. Low groundwater Si concentrations are generally observed in all other parts of Slovenia, since 
the dominant minerals in recharge areas of sampled groundwater are calcite and dolomite. Figure 200 
presents the correlation between groundwater Si and Na+ concentration (rs=0.81, p<0.05) which suggests, 
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possible sources of groundwater Si from sampling location Žegnani studenec (metamorphic rocks in the 
recharge area, NNE part) could be from quartz, chlorite, chalcedony, and albite.  
 
This simplified approach only serves as a rough approximation to the range of Si concentration in 
groundwater. Although chemical reactions in silicate aquifers are very slow, the assumption was that in 
the time of contact between water and rock, the chemical equilibria were approximately established. 
Naturally, during further groundwater flow through the aquifer the groundwater could not be in chemical 
equilibrium with rock any more. In order to calculate the exact concentration of Si in groundwater 
dissolution of quartz and other silicate minerals other factors needed to be considered, e.g. incongruent 
dissolution, adsorption and neoformation of silicates, etc.  
 
Aquifer porosity type 
 
The highest groundwater Si concentration was measured in aquifers with intergranular and fractured 
porosity (Fig. 206, Appendix 13M), and median in aquifers with mixed porosity (karstic, fractured, 
intergranular), because of prevalence of silicate minerals in the aquifer. The lowest groundwater Si 
concentration was measured in aquifers with either prevailing fractured or karstic porosity which are 
significantly lower (p<0.05) compared to groundwater from aquifers with intergranular, mixed (karstic, 
fractured, intergranular), and fractured porosity because of prevailing carbonate rocks.  
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A = intergranular porosity (n=40) 
B = fractured porosity (n=24) 
C = fractured and karstic porosity (n=30) 
D = karstic and fractured porosity (n=74) 
E = mixed porosity (karstic, fractured, 
intergranular) (n=6) 

Figure 206: Box and whisker plots for groundwater Si concentration in the recharge area of 
prevailing aquifer porosity type 

 
Sampling object type 
 
The highest groundwater Si concentrations are measured in private wells (Fig. 207, Appendix 13M), and 
median concentrations in groundwater from pumping stations, boreholes, and spring captures. Majority of 
those sampling locations are located in the NE part where silicate minerals prevail in the recharge areas. 
The lowest groundwater Si concentrations are observed in the springs and surface waters, since they 
were mostly sampled in the carbonate recharge areas. 
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A = pumping station (n=36) 
B = borehole (n=10) 
C = private well (n=8) 
D = spring capture (n=44) 
E = spring (n=58) 
F = surface water (n=18) 

Figure 207: Box and whisker plots for groundwater Si concentration according to sampling object 
type 

 
Spatial distribution of groundwater Si  
 
Increased groundwater Si concentrations (>6.00 mg/L), as a result of silicate weathering, are observed in 
shallow and deep aquifers with clastic sedimentay rocks in the recharge areas (NNE part - Mursko polje 
and Goričko), igneous and metamorphic rocks (NNE part - Pohorje Mt.) and clay (NNE part), where mostly 
silicate minerals prevail in the recharge areas (Fig. 208). Low groundwater Si concentrations (<3.00 mg/L) 
are observed in other parts of Slovenia with carbonate rocks in the recharge areas.  

 
Figure 208: Spatial distribution of groundwater Si  
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4.7. Parameters affected mostly by anthropogenic influences 
 
4.7.1.  Sodium (Na+) in groundwater 
 
Descriptive statistics of groundwater Na+  
 
Groundwater Na+ concentrations vary between 0.1 and 36.0 mg/L, with mean value 3.7 mg/L and median 
2.0 mg/L (Table 34). Groundwater Na+ concentration is not normally distributed (Fig. 209) and 
concentrations higher than 8.7 mg/L present outliers and extremes (sampling locations Padiščak (near the 
coast), Maver, Gradišče, LMV-1 Ljubljana, OV-29 Brunšvik, V-3A Lukavci, Strahinec (all located in the 
NE), and DAC-3 Skopice (E) (Fig. 210). The analytical uncertainty for Na+ is between 4.2 and 22.6 % 
(n=155). In 20 groundwater samples Na+ concentration is bellow LOD (½ LOD=0.25 mg/L) observed at 
sampling locations Bohinjska Bistrica, Gljun, Kamniška Bistrica, Krajcarica, Savica, Soča, Šumec, 
Zadlaščica, and Črna, all located in the NW and N part of the study area. None of water samples exceeds 
the allowed maximum level for drinking water (200 mg/L) according Rules on drinking water (2004). 
 
Table 34: Descriptive statistics of groundwater Na+ concentration 
Parameter n X Md Min Max S 

Na+ (mg/L) 175 3.7 2.0 0.1 36.0 5.3 
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Figure 209: Histogram for groundwater Na+

concentration (n=175) 
Figure 210: Box and whisker plot for 
groundwater Na+ concentration (n=175) 

 
Rock type  
 
The highest groundwater Na+ concentration is observed in the recharge areas with clastic sedimentary 
rocks (Fig. 211, Appendix 13N) where significantly higher concentrations (p<0.05) are measured 
compared to carbonate, igneous, and metamorphic rocks. Outliers are observed at sampling locations 
Maver, Gradišče, OV-29 Brunšnik, Strahinec, Padiščak, and LMV-1 Ljubljana, which are located in the 
NE, central, and coastal part of the country. Possible sources are weathering of silicate minerals, and 
proximity of the seaside. In the recharge areas of igneous and metamorphic rocks median groundwater 
Na+ concentration are observed (n=2), possible due to silicate weathering of minerals. Sampling location 
Berglez is an outlier, since concentrations of Na+ in those recharge areas were below LOD (n=6). The 
lowest groundwater Na+ concentration is observed in the recharge areas with carbonate rocks (high 
mountain and Dinaric karst) which are deficient in Na-rich minerals.  
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A = clastic sedimentary rocks (n=53) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic rocks 
(n=12) 

Figure 211: Box and whisker plots for groundwater Na+ concentration in the recharge areas of 
major rock types 
 
The highest groundwater Na+ concentration is observed in the recharge areas with Oligocene clay “sivica” 
at sampling location Maver (Fig. 212 and 213, Appendix 13N) which is significantly higher (p<0.05) 
compared to other lithological and lithostratigraphic units, possibly due to cation exchange between Na+ 
and Ca2+ (Fig. 214). Graph also shows that increased groundwater Na+ concentrations are observed in 
hard groundwater in lowlands, possibly due to anthropogenic influences, e.g. roads deicing, use of 
fertilizers, leakage from sewage systems, or other. Increased Na+ concentration is also observed in 
groundwater in contact with Eocene flysch rocks, Miocene clastics, and Quaternary clastics (medium- and 
coarse-grained) which are significantly higher (p<0.05) compared to Triassic and Jurassic carbonates. In 
the NE part the alluvial sediments were brought from high mountain regions from the N (Austria) and are 
composed of (Oligocene) tonalite and (Precambrian) quartz (sericite phyllite, phyllite schist, gneiss, 
amphibolite, chlorite, biotite – chlorite schist and marble) (Popit and Vaupotič, 2002). The lowest 
groundwater Na+ concentration is observed in the recharge area of carbonate rocks (Fig. 215). 
Comparison between groundwater Na+ and HCO3

- concentration suggest on silicate weathering 
mechanism in some groundwater samples which have recharge areas with clastic sedimentary, igneous, 
and metamorphic rocks with prevailing silicate minerals. This groundwater has lower HCO3

- concentration 
compared to groundwater in the recharge area of carbonate rocks. Most of these sampling locations have 
their recharge areas in silicate rocks, but this is not the major source of sodium in groundwater. In 
recharge areas wizh Triassic carbonates sampling locations Krka, Pšata, Veliki vrh Bloke are outliers, and 
in the recharge areas with Cretaceous carbonates sampling location B-9 Brestovica is an outlier. Possible 
natural source for increased groundwater Na+ concentration is the sea spray or precipitation due to vicinity 
of the sea (Fig. 216).  
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A = flysch rocks (n=7) 
B = clay (n=2) 
C = gravel and sand (n=26) 
D = gravel, sand and clay 
(n=11) 
E = shale and sandstone 
(n=7) 
F = limestone prevailing 
(n=74) 
G = dolomite prevailing (n=30) 
H = carbonates with clastics 
(n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 

Figure 212: Box and whisker plots for groundwater Na+ concentration in the recharge area of 
prevailing lithological unit 
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A = old Paleozoic rocks (n=4) 
B = Carboniferous-Permian 
beds (n=5)   
C = Permian Val Gardena layers 
(n=2) 
D = Ladinian igneous rocks 
(n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates 
(n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks 
(n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics 
(medium- and coarse-grained) 
(n=26) 

Figure 213: Box and whisker plots for groundwater Na+ concentration in the recharge area of 
prevailing lithostratigraphic unit 
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Land cover/use 
 
High groundwater Na+ concentrations are observed in the recharge areas with non-irrigated arable land 
and industrial or commercial units (Figs. 220 and 221; Appendix 13N). Groundwater Na+ concentration in 
the recharge areas with non-irrigated arable land is significantly higher (p<0.05) compared to recharge 
areas of all other land use types according to CORINE Land Cover except in the recharge areas with 
industrial or commercial units and complex cultivation patterns. In classical agricultural products often a 
variety of fertilizers and animal manure and slurry are used (also leakage from septic tanks), and in the 
recharge area of industrial or commercial units elevated Na+ concentration is most likely from the use of 
salts for deicing roads (large seasonal fluctuations). Outliers in the recharge areas of complex cultivation 
patterns are observed at sampling location Maver. Strong correlations exists between groundwater Na+ 

and K+ (rs=0.82, p<0.05; Fig. 222), Br (rs=0.71, p<0.05; Fig. 223), and moderate with SO4
2- (rs=0.61, 

p<0.05; Fig. 224), and NO3
- (rs=0.51, p<0.05; Fig. 225) suggest the anthropogenic influence on 

groundwater, especially in the recharge area of silicate rocks in the NE part of the country. Low 
groundwater Na+ concentrations are observed in all other classes. According to the type of forest 
(coniferous, broad-leaved, or mixed) in the recharge area of forests groundwater Na+ concentrations are 
similar (outliers in coniferous forest: V-6 Skorba and Berglez; broad-leaved forest: V-3A Lukavci; and 
mixed forest: Padiščak, Grad-1 Grad, and VP-1 Prosenjakovci). Outliers are observed at sampling 
locations B-9 Brestovica, Odolina, Padiščak, and Pasji rep due to influence from the sea. At sampling 
locations V-3A Lukavci and V-6 Skorba due possible to agricultural activities (fertilizers, manure), leakage 
of septic tanks and sewage system, and use of road salt. The content of older groundwater Na+ (sampling 
locations Grad-1 Grad and VP-1 Prosenjakovci) is possible due to longer groundwater residence time with 
silicate minerals in the recharge areas.  
 
According to Actual agricultural and forest land usage classification (Fig. 221; Appendix 13N) groundwater 
Na+ concentrations in the recharge areas with intense use of nutrients and plant protection products and 
urban areas are significantly higher (p<0.05) compared to recharge areas with forest and areas of less 
intense use of nutrients and plant protection products. In the recharge area of less intense use of nutrients 
and plant protection products the outliers are sampling locations OV-29 Brunšvik and Gradišče. 
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A = bare rocks (n=8) 
B = moors and heathland (n=2) 
C = natural grasslands (n=2) 
D = coniferous forest (n=20) 
E = broad-leaved forest (n=45) 
F = mixed forest (n=56) 
G = non-irrigated arable land 
(n=10) 
H = complex cultivation patterns 
(n=18) 
I = land principally occupied by 
agriculture, with significant areas 
of natural vegetation (n=10) 
J = industrial or commercial units 
(n=2) 

Figure 220: Box and whisker plots for groundwater Na+ concentration in the recharge area of 
prevailing land use type (CORINE Land Cover) 
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part of the study area, where intense agricultural activities are present and in the recharge areas the 
silicate alluvial deposits prevail over carbonates. In the coastal part increased Na+ concentrations suggest 
possible influence from the anthropogenic sources (fertilizers) or natural sources like the sea spray or 
maritime aerosols. Slightly increased Na+ concentration are also observed in Krško-Brežice alluvial plain 
(E part) where gravel, sand, and clay of carbonate and silicate minerals mix, and aquifer is influenced by 
the surface water of Sava River (EARS, 2010). Lower groundwater Na+ concentrations are observed in the 
NW and N part as well as in the karstic region of Dolenjska (SE). In these regions mostly carbonate rocks 
prevail in the recharge areas and the anthropogenic influences (agricultural and urban) are less 
pronounced than in the NE part of country.  

 
Figure 228: Spatial distribution of groundwater Na+ 
 
 
4.7.2. Chloride (Cl-) in groundwater 
 
Descriptive statistics of groundwater Cl- 
 
Groundwater Cl- concentrations range from 0.11 to 36.70 mg/L, with a mean value of 4.99 mg/L and 
median 2.34 mg/L (Tab. 35). Groundwater Cl- is not normally distributed (Fig. 229) and concentrations 
higher than 12.00 mg/L present the outliers and extremes (sampling locations BLP-2 Nedelica, DAC-3 
Skopice, Gradišče, Jurčičev izvir, LMV-1 Ljubljana, OV-29 Brunšvik, Padiščak, Šempeter 0840, V-6 
Skorba, Vidovič, and Vo-1 Vodice) (Fig. 230). Those sampling locations are located in the NE, central and 
coastal part of study area. The analytical uncertainty for Cl- is between 4.1 and 30.1 % (n=147). 
Groundwater Cl- concentrations below LOD (1st ½ LOD=0.115 mg/L; 2nd ½ LOD=0.375 mg/L) were 
measured in 28 groundwater samples from sampling locations Gljun, Krajcarica, Kamniška Bistrica, 
Savica, Žegnani studenec, Kamniška Bitstrica, Lipnica, Savica, Šumec, Bohinjska Bistrica, Črna, Lučnica, 
Soča, Zadlaščica, Framski slap, Pevčevo, and Godec. None of water samples exceeds the allowed 
maximum level for drinking water (250 mg/L) according Rules on drinking water (2004).  
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Table 35: Descriptive statistics of groundwater Cl- concentration 
Parameter n X Md Min Max S 

Cl- (mg/L) 175 4.99 2.34 0.11 36.70 7.09 
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Figure 229: Histogram for groundwater Cl- 
concentration (n=175) 

Figure 230: Box and whisker plot for 
groundwater Cl- concentration (n=175) 

 
 
Rock type  
 
Groundwater Cl- concentration in the recharge areas with clastic sedimentary rocks has the largest 
variance and the highest concentration (Fig. 231, Appendix 13O) and is significantly higher (p<0.05) 
compared to groundwater with carbonate, igneous, and metamorphic rocks. The outliers are observed in 
water samples from sampling locations Gradišče, OV-29 Brunšvik (NE part), and LMV-1 Ljubljana (central 
part). Although in NE part of Slovenia the concentration of carbonate minerals is lower, and silicate 
minerals dominate, their contribution to groundwater Cl- concentration has smaller impact. This has been 
verified with previous parameters – concentration of Si and Na+. In the recharge areas with carbonate rock 
groundwater Cl- concentration is medium (outliers and extreme values at sampling locations B-9 
Brestovica, Pšata, Čepovan-1/94, Krka, and Veliki Vrh). The lowest groundwater Cl- concentration is 
observed in the recharge areas with igneous and metamorphic rocks with outliers found at sampling 
location Čemažarjev izvir.  
 
Groundwater Cl- concentration was in 8 water samples below LOD and only in 4 water samples above 
LOD. This suggests that silicate rocks weathering does not influence the groundwater Cl- concentration.  
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A = clastic sedimentary rocks 
(n=53) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic 
rocks (n=12) 
 
 
 

Figure 231: Box and whisker plots for groundwater Cl- concentration in the recharge area of major 
rock types 
 
The widest range and the highest groundwater Cl- concentrations are observed in the recharge areas with 
Quaternary clastics (Figs. 232 and 233, Appendix 11O), which  is significantly higher (p<0.05) compared 
to recharge areas with Permian Ladinian igneous rocks, Miocene Lithothamnium  limestone, Cretaceous 
carbonates, Oligocene igneous rocks, Carboniferous-Permian beds, Pliocene clastics, Oligocene clay 
“sivica”, old Paleozoic rocks, and Triassic carbonates. Clastics (gravel and sand) in lowlands are usually 
suitable for agricultural land use, so the anthropogenic influence on groundwater is considered. Also, a 
wide range of Cl- concentrations is observed in groundwater with Eocene flysch rocks in the recharge 
areas. Groundwater Cl- concentration in the recharge areas with Brkini flysch rocks is lower compared to 
Istrian flysch, which suggest that groundwater is influenced by the sea water or by anthropogenic sources. 
Median groundwater Cl- values are observed in the recharge area of Miocene clastics (extreme values at 
sampling location Strahinec), and clay. Groundwater Cl- concentration in the recharge areas with Miocene 
clastics is significantly higher (p<0.05) compared to Miocene Lithothamnium limestone, Oligocene igneous 
rocks, Carboniferous-Permian beds, old Paleozoic rocks, and Triassic carbonates. In the recharge area of 
prevailing limestone the outliers are observed at sampling locations B-9 Brestovica, Pšata, and Krka, and 
extreme values in B-9 Brestovica and Pšata. In the recharge area of dolomite prevailing outliers are found 
at sampling locations Čepovan-1/94 and Veliki Vrh Bloke. The lowest groundwater Cl- concentrations are 
observed in igneous and metamorphic rocks.  
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A = flysch rocks (n=7) 
B = clay (n=2) 
C = gravel and sand (n=26) 
D = gravel, sand and clay (n=11) 
E = shale and sandstone (n=7) 
F = limestone prevailing (n=74) 
G = dolomite prevailing (n=30) 
H = carbonates with clastics 
(n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 
 

Figure 232: Box and whisker plots for groundwater Cl- concentration in the recharge area of 
prevailing lithological unit 
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A = old Paleozoic rocks (n=4) 
B = Carboniferous-Permian beds 
(n=5) 
C = Val Gardena layers (n=2) 
D = Permian Ladinian igneous 
rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates (n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics (medium- 
and coarse-grained) (n=26) 

Figure 233: Box and whisker plots for groundwater Cl- concentration in the recharge area of 
prevailing lithostratigraphic unit 
 
There is a link between groundwater Cl- concentrations and the distance from coast (Fig. 234).  
Groundwater Cl- concentration in rain water is usually less than 10 mg/L, and can increase in coastal 
areas due to influence of ocean spray (Davis et al. 1998; Karanth, 1987). In order to evaluate the possible 
influence from the sea on groundwater only 5 sampling locations were considered (B-9 Brestovica, P-1 
Pliskovica, NG-4, Padiščak, and Rižana) which are possibly hydrologically connected to the sea, or are 
close to the sea (sea spray). As already mentioned, strong correlation between groundwater Cl- and Na+ 
as well as beween Cl- and Br (rs=0.73, p<0.05) is observed (Fig. 235). Bromide is found in various 
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Aquifer porosity type 
 
Groundwater Cl- concentration in aquifers with intergranular porosity has the widest range (Fig. 237, 
Appendix 13O), and is significantly higher (p<0.05) compared to other groups. In all other aquifer porosity 
types, mean concentrations of groundwater Cl- are similar. In aquifers with fractured porosity groundwater 
from Padiščak presents an extreme value, and in aquifers with fractured and karstic porosity the sampling 
locations Čepovan-1/94 and Veliki Vrh Bloke are outliers. In aquifer with karstic and fractured porosity the 
sampling location Pšata is an outlier, and B-9 Brestovica an extreme value.    
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A = intergranular porosity (n=39) 
B = fractured porosity (n=26) 
C = fractured and karstic porosity 
(n=30) 
D = karstic and fractured porosity 
(n=74) 
E = mixed porosity (karstic, fractured, 
intergranular) (n=6) 

Figure 237: Box and whisker plots for groundwater Cl- concentration in the recharge area of prevailing 
aquifer porosity type 
 
Land cover/use 
 
The largest variance and groundwater Cl- concentrations are observed in the recharge areas with non-
irrigated arable land, and industrial or commercial units (Figs. 238 and 239, Appendix 13N), and are 
significantly higher (p<0.05) compared to all land use types according to CORINE Land Cover except in 
the recharge areas with land principally occupied by agriculture, with significant areas of natural 
vegetation. This is possible due to intensive use of fertilizers, application of manure and slurry, leakage 
from sewage systems or septic tanks, and salt from deicing roads during winter time (seasonal 
fluctuations). Median groundwater Cl- concentrations are observed in the recharge areas with complex 
cultivation patterns and land principally occupied by agriculture, with significant areas of natural 
vegetation. Low groundwater Cl- concentrations are found in the recharge areas of all other land use units. 
In the recharge area of coniferous forest outliers are observed at sampling location V-6 Skorba. In the 
recharge area of deciduous forest extreme values are observed at sampling location V-3A Lukavci and 
outliers in B-9 Brestovica. In the recharge area of mixed forest extreme values are observed at sampling 
location Padiščak and outliers in Krka and Pšata.  
 
According to Actual agricultural and forest land usage classification groundwater Cl- concentrations in the 
recharge areas with areas of intense use of nutrients and plant protection products and urban areas is 
significantly higher (p<0.05) compared to recharge areas with forest areas of less intense use of nutrients 
and plant protection products. 
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A = bare rocks (n=8)  
B = moors and heathland (n=2) 
C= natural grasslands (n=2) 
D = coniferous forest (n=20) 
E = broad-leaved forest (n=45) 
F = mixed forest (n=56) 
G = non-irrigated arable land 
(n=10) 
H = complex cultivation patterns 
(n=18) 
I = land principally occupied by 
agriculture, with significant 
areas of natural vegetation 
(n=10) 
J = industrial or commercial 
units (n=2) 

Figure 238: Box and whisker plots for groundwater Cl- concentration the recharge area of 
prevailing land use type (CORINE Land Cover) 
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A = forest (n= 137) 
B = areas of less intense use of 
nutrients and plant protection 
products (n=18) 
C = areas of intense use of 
nutrients and plant protection 
products (n=16) 
D = urban areas (n=2) 

Figure 239: Box and whisker plots for groundwater Cl- concentration in the recharge area of 
prevailing land use type (Actual agricultural and forest land usage) 
 
Comparison between groundwater Cl- concentration with EC, NO3

-, K+, and SO4
2- values provides the 

information on agricultural and urban influences on groundwater. There is a moderate correlation between 
groundwater Cl- and EC (rs=0.69, p<0.05) (Fig. 240) suggesting that harder Slovenian groundwater in 
lowlands usually contains increased Cl- concentrations due to anthropogenic activities (sampling locations 
OV-29 Brunšvik, LMV-1 Ljubljana, Gradišče, BLP-1 Nedelica, Padiščak, and DAC-3 Skopice). Strong 
correlation exists between Cl- and NO3

- (rs=0.76, p<0.05) (Fig. 241) and K+ and Cl- (rs=0.71, p<0.05) (Fig. 
242) which suggests that groundwater is influenced by the (excessive) use of fertilizers or other waste 
water (OV-29 Brunšvik, BLP-2 Nedelica, and Šempeter 0840). Increased groundwater Cl- and SO4

2- 

(rs=0.58, p<0.05) are observed at sampling locations Padiščak, BLP-2 Nedelica, Gradišče, OV-29 
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vineyards, and gardens, or from using salt for deicing roads). Also high groundwater Cl- concentrations 
are observed near the coast suggesting the influence from fertilizers or waste water, or also from the sea 
(precipitations and seaspray). Lowest groundwater Cl- concentrations (<2.00 mg/L) are observed in the 
NW, N, and NNE part along the Austrian border (high mountains) where agricultural activities are not so 
frequent and intense, urbanization is not so dense, and carbonate rocks prevail as well as groundwater 
dilution by heavy precipitation (increased in NW and N part of the country). 
 

 
Figure 247: Spatial distribution in groundwater Cl- 
 
 
4.7.3.  Nitrate (NO3

-) in groundwater 
 
Descriptive statistics of groundwater NO3

- 

 
In Slovenian groundwaters NO3

- concentration ranges between 0.33 and 92.56 mg/L, with mean value of 
9.56 mg/L and median 4.47 mg/L (Tab. 36). Groundwater NO3

- concentrations are not normally distributed 
(Fig. 248). Box and whisker plot for groundwater NO3

- concentration (Fig. 249) shows concentrations 
higher than 12.57 mg/L present outliers and extremes. Most of these groundwaters were sampled from 
shallow intergranual aquifers (28) and fissured aquifers (2). The analytical uncertainty for groundwater 
NO3

- is between 4.4 and 32.6 % (n=156). In 19 water samples the groundwater NO3
- concentration is 

below LOD (½LOD=2.21 mg/L) which is observed in groundwater from sampling locations Dobličica, 
Gljun, Godec, GRAD-1 Grad, Grešnikov hrib, Kamniška Bistrica, Krajcarica, Lipnik, Odolina, P-1 
Pliskovica, Savica, Soča, Trate, and VP-1, Prosenjakovci. Seven groundwater samples exceeded the 
quality standard for drinking water (>50 mg/L) according Rules on drinking water (2004) and were 
measured from sampling locations BLP-2 Nedelica, OV-29 Brunšvik, Šempeter 0840, and Vidovič.  
 
One of determined water type is Ca2+-Mg2+-HCO3

--NO3
- where NO3

- is one of the dominant anions in 2 
water samples (sampling location BLP-2 Nedelca) sampled in intergranular aquifer with values ~70 mg/L 
of NO3.  
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Table 36: Descriptive statistics of groundwater NO3
- concentration 

Parameter n X Md Min Max S 

NO3
- (mg/L) 175 9.56 4.47 0.33 92.56 15.87 
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Figure 248: Histogram for groundwater NO3
- 

concentration (n=175) 
Figure 249: Box and whisker plot for 
groundwater NO3

- concentration (n=175)  
 
Rock type  
 
The highest groundwater NO3

- concentrations are observed in the recharge areas with clastic sedimentary 
rocks (Fig. 250, Appendix 13P) which are significantly higher (p<0.05) compared to groundwater in the 
recharge areas with carbonate and igneous and metamorphic rocks. Extremly high NO3

- concentrations in 
groundwater were observed in the recharge areas with clastic sedimentary rocks from sampling locations 
Šempeter 0840, OV-29 Brunšvik, V-6 Skorba, BLP-2 Nedelica, and Vidovič (>60.00 mg/L). This is 
because in those recharge areas intensive agricultural and urban land uses are present. Medium high 
groundwater NO3

- concentrations are observed in the recharge areas with carbonate rocks where 
groundwater from sampling location GI-1 Gornji Ig presents the outliers. It is believed that this sampling 
location is under the influence of contamination which occurs in approximate vicinity of urban and 
agricultural area land use. The lowest groundwater NO3

- concentrations are observed in the recharge 
areas with igneous and metamorphic rocks due to absence of urban and agricultural land uses.  
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A = clastic sedimentary rocks (n=53) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic rocks 
(n=12) 
 

Figure 250: Box and whisker plots for groundwater NO3
- concentration in the recharge areas of 

major rock types 
 
The highest groundwater NO3

- concentrations are observed in the recharge areas with gravel and sand 
(Fig. 251, Appendix 13P) which are significantly higher (p<0.05) compared to groundwater sampled from 
recharge areas with other lithological units. According to lithostratigraphic classification groundwater NO3

- 
concentrations in the recharge areas with Quaternary clastics, Oligocene clay “sivica”, and Miocene 
clastics (Fig. 252, Appendix 13P) are significantly higher (p<0.05) compared to groundwater in the 
recharge areas with other lithostratigraphic units.  
 
The highest peak (~90,00 mg/L) is measured in groundwater from sampling location OV-29 Brunšvik (NE 
part) due to intensive (excessive) use of fertilizers for production of vegetables and flowers in the 
immediate vicinity of sampling (Fig. 253). Concentration of groundwater NO3

- in this group has a large 
variance due to various surface activities and land use above the aquifer. Medium high groundwater NO3

- 
concentrations are observed in the recharge areas with flysch rocks and clay. In flysch rocks groundwater 
from sampling location Padiščak (SSW part) is influenced by the local contamination source. The lowest 
groundwater NO3

- concentrations are observed in the recharge areas of shale and sandstone, limestone 
prevailing, dolomite prevailing, carbonates with clastics, and igneous and metamorphic rocks, due to less 
intensive agricultural and urban land use. In the recharge areas of prevailing limestone or dolomite the 
outliers at sampling locations B-9 Brestovica and GI-1 Gornji Ig are observed possibly due to point source 
contamination. 
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(n=7) 
F = limestone prevailing 
(n=74) 
G = dolomite prevailing 
(n=30) 
H = carbonates with clastics 
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Figure 251: Box and whisker plots for groundwater NO3

- concentration in the recharge area of the 
prevailing lithological unit  
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A = old Paleozoic rocks (n=4) 
B = Carboniferous-Permian beds 
(n=5) 
C = Permian Val Gardena layers 
(n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates (n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics (medium- 
and coarse-grained) (n=26) 

Figure 252: Box and whisker plots for groundwater NO3
- concentration in the recharge area of the 

prevailing lithostratigraphic unit   
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Figure 253: Plant cultivation at sampling location OV-29 Brunšvik  
 
Aquifer porosity type 
 
The highest groundwater NO3

- concentrations are observed in the intergranular aquifers (Fig. 254, 
Appendix 13P) which are significantly higher (p<0.05) compared to groundwater in aquifers with other 
porosity types. Concentrations are high due to intense use of fertilizers and possible waste water leakage.  
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A = intergranular porosity (n=39) 
B = fractured porosity (n=26) 
C = fractured and karstic porosity 
(n=30) 
D = karstic and fractured porosity 
(n=74) 
E = mixed porosity (karstic, 
fractured, intergranular) (n=6) 

Figure 254: Box and whisker plots for groundwater NO3
- concentration in the recharge area of the 

prevailing aquifer porosity type 

 
Land cover/use 
 
The highest groundwater NO3

- concentrations are observed in the recharge areas of non-irrigated arable 
land, land principally occupied by agriculture, with significant areas of natural vegetation, and industrial or 
commercial units, which are significantly higher (p<0.05) compared to other CORINE Land Cover classes. 
According to Actual agricultural and forest land usage classification (Fig. 255, Appendix 13P) the 
groundwater NO3

- concentrations with areas of intense use of nutrients and plant protection products, and 
urban areas are significantly higher (p<0.05) compared to recharge areas with forest, and areas of less 
intense use of nutrients and plant protection products. 
 
The highest measured groundwater NO3

- concentrations are ~90 mg/L (Fig. 256, Appendix 13P). Those 
groundwater NO3

- concentrations are most certainly derived from chemical fertilizers (Figs. 269 and 270) 
which are associated with the use of Cl- (rs=0.76, p<0.05), K+ (rs=0.58, p<0.05) and Na+ (rs=0.51, p<0.05), 



Mezga, K.: Natural hydrochemical background and dynamics of groundwater in Slovenia. 
Ph.D. Thesis. University of Nova Gorica, 2014. 
____________________________________________________________________________________ 

168 
 

and SO4
2- (rs=0.55, p<0.05) observed at sampling locations OV-29 Brunšvik, BLP-2 Nedelica, Šempeter 

0840, and V-6 Skorba (NE part). Medium high groundwater NO3
- concentrations (< 30 mg/L) are observed 

in the recharge areas of agricultural surfaces of complex cultivation patterns. Industrial and urbanised 
areas can be a source of contamination due to possible septic tanks or sewage leaks (old and inefficient 
sewer system) (sampling location Gradišče), and to industrial waste water. Lower groundwater NO3

- 
concentrations (< 6 mg/L) are observed in areas where mostly forest as a vegetation cover prevails, or 
where the use of fertilizers are not intense. Groundwater from the recharge areas of forest is expected to 
have lower NO3

- concentrations, since it reflect mostly decomposing vegetation. Detailed observations of 
the surroundings of those sampling locations have shown that part of the recharge area of sampling 
location B-9 Brestovica is deforested (by fire destruction), or are contaminated a point source (sampling 
location Padiščak). Regarding groundwater in the recharge area with coniferous forest a sampling location 
with increased NO3

- concentration was observed (~45 mg/L) at the pumping station IG-1 Gornji Ig. 
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A = bare rocks (n=8) 
B = moors and heathland (n=2) 
C = natural grasslands (n=2) 
D = coniferous forest (n=20) 
E = broad-leaved forest (n=45) 
F = mixed forest (n=56) 
G = non-irrigated arable land 
(n=10) 
H = complex cultivation 
patterns (n=18) 
I = land principally occupied by 
agriculture, with significant 
areas of natural vegetation 
(n=10) 
J = industrial or commercial 
units (n=10) 

Figure 255: Box and whisker plots for groundwater NO3
- concentration in the recharge area of the 

prevailing land use type (CORINE Land Cover) 
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Spatial distribution of groundwater NO3
- 

 
Low groundwater NO3

- concentrations (< 1.11 mg/L) are mostly observed in the high mountain regions in 
the N and NW part of the country where agricultural activities and urban land use are not pronounced due 
to geomorphology of the surface of terrain, lack of soil thickness, and vegetation coverage. In the deeper 
aquifers (NE part) low groundwater NO3

- concentrations are present most probably due to denitrification 
processes (Fig. 262) although the input NO3

- concentrations with the percolation water were high. 
Increased groundwater NO3

- concentrations are observed in the alluvial plains – Sava basin aquifer, 
Savinja basin aquifer, Krško basin aquifer, Drava field aquifer, and Mura basin aquifer, due to intensive 
land agricultural and urban land use. The highest groundwater NO3

- concentration is observed in the 
Drava field aquifer due to excessive use of fertilizers. 

 
Figure 262: Spatial distribution of groundwater NO3

- 
 
Main sources of NO3

- in groundwater are anthropogenic, e.g. (excessive) use of nitrogen fertilizers 
(organic and synthetic fertilizers), leakages from septic tanks and/or sewage systems, and waste water. 
Groundwater NO3

- concentrations depend mostly on the type of land use in the recharge area, especially 
on the intensity of fertilizers usage. The natural background level for groundwater NO3

- from shallow 
aquifers is 3.81 mg/L (n=91). Since agricultural activities are mostly present in lowlands, increased 
groundwater NO3

- concentrations (> 50.00 mg/L) are observed in the intergranuar aquifers along larger 
rivers (central, E, and NE part). Groundwater NO3

- concentrations in the NW, W, and NNE part are low 
(<3.00 mg/L) due to low intensity of agricultural and urban land use. Low groundwater NO3

- concentrations 
are also observed in older groundwaters (<3.00 mg/L) (NE part) most possibly due to low initial NO3

- 
concentration or due to denitrification processes in the groundwater recharge areas. 
 
4.7.4.  Ammonium (NH4

+) in groundwater 
 
Groundwater NH4

+ concentration above LOD was detected in only one water sample from sampling 
location Vidovič (0.05 mg/L) located in the NE part of the country and is not exceeding the allowed 
maximum level for drinking water (0.5 mg/L) according Rules on drinking water (2004). This suggests that 
the prevailing nitrogen species in most Slovenian groundwaters is NO3

-.  
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The reason for occurrence of NH4
+ in groundwater is perhaps due to excessive use of inorganic or organic 

fertilizers (ammonium sulphate (NH4)2SO4, manure, slurry, leakage from septic tanks or sewage system) 
in the late summer which has been proven by the increased groundwater NO3

- concentration (63.30 mg/L) 
in water sample from sampling location Vidovič. Rainwater (or increased irrigation on the surface) has 
transported NH4

+ quickly into groundwater before it got transformed into NO3
- and NO2

-. This is confirmed 
by observation of reduced access of oxygen in to water in the presence of organic matter. 
 
Although dissolved oxygen (DO) was not measured in the groundwater, other indicators for reductive 
environment were observed, e.g. Fe, Mn, As, and NH4

+. Since their concentrations in groundwater are 
very low it is assumed that sampled groundwater is mostly oxidized.  
 
 
4.7.5.  Stable isotope composition of total nitrogen (δ15Ntot) in groundwater  
 
Descriptive statistics of groundwater δ15Ntot 
 
Based on the 133 groundwater samples the δ15Ntot values vary between -2.8 ‰ and 18.6 ‰, with mean 
value of 4.2 ‰ and median 3.65 ‰ (Tab. 37). Measured groundwater δ15Ntot values are not normally 
distributed (Fig. 263) and values above 15.10 ‰ present outliers observed at sampling locations 
Radeščica and DAC-3 Skopice (Fig. 264).  
 
Table 37: Descriptive statistics of groundwater δ15Ntot values 
Parameter n X Md Min Max S 

δ15Ntot (‰) 133 4.24 3.6 -2.8 18.6 4.1 
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Figure 263: Histogram for groundwater δ15Ntot 
values 

Figure 264: Box and whisker plot for 
groundwater δ15Ntot values 

 
 
Land cover/use 
 
The most enriched in 15N is groundwater sampled in the recharge areas of non-irrigated arable land (Fig. 
265, Appendix 13Q) which suggests a mixture of organic and/or synthetic fertilizers (intense use of 
nutrients and plant protection products). By grouping groundwaters into 2 groups according to 
groundwater NO3

- concentration ― concentrations below the natural background level (>3.81 mg/L) and 
concentrations above the natural background level (<3.82 mg/L), it is observed that recharge areas from 
the first group are mostly vegetated by the natural vegetation, whereas in the second group the land is 
used for agricultural and urban purposes. This provides the information on the origin of groundwater 
δ15Ntot, where in the natural recharge areas groundwater δ15Ntot values vary from -2.8 to 8.8 ‰ (mean 1.6 
‰), and in anthropogenically influenced recharge areas from -0.3 to 18.5 ‰ (mean 5.6 ‰). Groundwater 
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which recharge areas are non-irrigated arable land is significantly enriched (p<0.05) in 15N compared to 
groundwater with recharge areas with bare rocks, moors and heathland, natural grasslands, and 
coniferous forest. Also groundwater with recharge areas in complex cultivation patterns, and industrial or 
commercial units, which are significantly enriched in 15N compared to groundwater with bare rocks and 
moors and heathland in its recharge areas, suggest the presence of both organic and synthetic fertilizers.  
 
According to Actual agricultural and forest land usage classification (Fig. 266, Appendix 13Q) groundwater 
with forest in the recharge areas is significantly depleted in 15N compared to groundwater in other classes.  
Groundwater in the recharge areas of forest (Fig. 280, Appendix 11Q) has δ15Ntot values between 2 
to 8 ‰ which refers to naturally occurring nitrate in soil horizons. Broad-leaved forests are slightly 
enriched in 15N compared to coniferous forest because of more complete decomposition of leaves. The 
most depleted in 15N is groundwater in the recharge areas of bare rocks, moors and heathland, and 
natural grasslands, where the dominant source of nitrogen is the atmosphere (precipitation) and soil 
horizon.   
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A = bare rocks  
B = moors and heathland 
C= natural grasslands 
D = coniferous forest  
E = broad-leaved forest 
F = mixed forest 
G = non-irrigated arable land 
H = complex cultivation patterns 
I = land principally occupied by 
agriculture, with significant areas 
of natural vegetation 
J = industrial or commercial units 

Figure 265: Box and whisker plots for groundwater δ15Ntot values in the recharge area of the 
prevailing land use type (CORINE Land Cover) 
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A = pumping station (n=27) 
B = borehole (n=6) 
C = private well (n=4) 
D = spring capture (n=29) 
E = spring (n=51) 
F = surface water (n=16) 

Figure 272: Box and whisker plots for groundwater δ15Ntot values according to sampling object 
type 

 
Spatial distribution of groundwater δ15Ntot  
 
In the high mountain regions in the NE part of studied area (Julian Alps) groundwater is depleted in 15N 
(< 0 ‰) (Fig. 273) suggesting naturally occurring nitrate in precipitation (and less from soil organic matter). 
Namely, groundwater from sampling locations Bohinjska Bistrica, Gljun, Krajcarica, Savica, Soča, and 
Zadlaščica (in the NW part) have very low (2.5 mg/L) mean groundwater NO3

- concentration due to alpine 
vegetation, thin soil layer, and negligible influence from the agriculture and human land use. In the N part 
(Karavnke Mts., Kamnik-Savinja Alps) and NNE part of country (Pohorje Mt.) groundwater is enriched in 
15N due to mostly forest vegetation in the recharge area, thicker soil horizon and more organic matter in 
the soil (from leaves). Groundwater in some parts of N and NW could be influenced by grazing livestock 
which manure could enrich groundwater in 15N. Groundwater enriched in 15N (2.5 – 7.5 ‰) suggests 
possible use of synthetic fertilizers (-3 – 3 ‰) and organic fertilizers (3 – 7 ‰). The most enriched in 15N (> 
12.0 ‰) is groundwater stored in alluvial plains (Krško-Brežice and Pomurje) suggesting the source of 
δ15Ntot is of organic fertilizers (animal manure or slurry from septic tanks) which are spilled on the fields, or 
perhaps due to leakage from septic tanks. Groundwater in deeper aquifers is probably denitrified because 
the concentration of NO3

- is low and groundwater is enriched in 15N (mean value 6.1 ‰; n=4).   
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Figure 273: Spatial distribution of groundwater δ15Ntot 
 

4.7.6. Potassium (K+) in groundwater 
 
Descriptive statistics of groundwater K+  
 
Groundwater K+ concentration ranges between 0.04 and 12.00 mg/L, with mean value of 0.82 mg/L and 
median value of 0.44 mg/L (Tab. 38). Analytical uncertainty for groundwater K+ concentration is between 
4.1 and 18.8 %. In 47 groundwater samples K+ concentration was below LOD (1st ½ LOD = 0.04 mg/L, 2nd 
½ LOD = 0.125 mg/L) measured at sampling locations Gljun, Kamniška Bistrica, Krajcarica, Savica, 
Bohinjska Bistrica, Dobličica, Hotešk, Hubelj, Ilirska Bistrica, Kropa, Lipinica, Malenščica, Mali Obrh, 
Mitovšek, Mošenik, Mrzkel, Obrh Rinža, P-1 Pliskovica, Rakitnica, Soča, Šumec, Trate, Vipava, 
Zadlaščica, Črna, Grajsko zajetje, Kjarjcarica, Lipnik, Lučnica, Podroteja, Velika Toplica, Veliki vrh Bloke, 
and Sevšek. Distribution of groundwater K+ concentration is not normal (Fig. 274) and values higher than 
1.60 mg/L present outliers and extremes (Fig. 275). Those values were observed in groundwater from 
sampling locations NG-4 and Padiščak near the Coast, DAC-3 Skopice, Strahinec, Gradišče, OV-29 
Brunšvik in alluvial plains, and VG-10 Mala Goba, Veliki Vrh Bloke in the central part of the country.   
There is no numerical Slovenian drinking water quality guideline for K+ in water according to Rules on 
drinking water (2004). 
 
 Table 38: Descriptive statistics of groundwater K+ 
Parameter n X Md Min Max S 

K+ (mg/L) 175 0.82 0.44 0.04 12.00 1.60 
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Figure 274: Histogram for groundwater K+

concentration (n=175) 
Figure 275: Box and whisker plot for 
groundwater K+ concentration (n=175) 

 
 
Rock type  
 
Increased groundwater K+ concentrations are observed in the recharge areas with clastic sedimentary 
rocks (Fig. 276, Appendix 13R) which are significantly higher compared to groundwater in the recharge 
areas with carbonate, igneous, and metamorphic rocks. Mineralogical composition of clastic silicate rocks 
could contribute to greater groundwater K+ concentration. Medium groundwater K+ concentration are 
observed in groundwater in the recharge areas with igneous and metamorphic rocks which also contain 
silicate minerals. The lowest groundwater K+ concentration was observed in the recharge area of 
carbonate rocks due to lack of K-bearing minerals.  
 

 Median 
 25%-75% 
 Non-Outlier Range 
 Outliers
ExtremesA B C

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

K
+
 (

m
g

/L
)

A = clastic sedimentary rocks 
(n=53) 
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C = igneous and metamorphic 
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Figure 276: Box and whisker plots for goundwater K+ concentration in the recharge area of 
major rock types 
 
The highest groundwater K+ concentrations are observed in the recharge areas with Quaternaryand 
Miocene clastics (gravel, sand, and clay), and flysch rocks (Figs. 277 and 278, Appendix 13R), where K-
rich minerals could be found in the silicate rocks (phyllosilicates). The lowest groundwater K+ 
concentrations are observed in the recharge areas of limestone prevailing. Most alluvial deposits in 
Slovenia belong to Quaternary sediments of carbonate and silicate origin (Bavec and Pohar, 2009; EARS, 
2010), but alluvial deposits of Mura River (NE part) are mostly non-carbonate (Markič, 2009). The lowest 
groundwater K+ concentrations are observed in the recharge areas of carbonate mineras due to lack of K-
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rich minerals. Groundwater K+ concentrations between the groups (lithological and lithostratigraphic units) 
do not statistically differ. 
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G = dolomite prevailing (n=30) 
H = carbonates with clastics (n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 
 

Figure 277: Box and whisker plots for groundwater K+ concentration in the recharge area of the 
prevailing lithological unit  

 Median 
 25%-75% 
 Non-Outlier Range 
 Outliers
 Extremes

A B C D E F G H I J K L M N
0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

K
+
 (

m
g

/L
)

A = old Paleozoic rocks (n=4)  
B = Carboniferous-Permian beds 
(n=5) 
C = Permian Val Gardena layers 
(n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates (n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics (medium- 
and coarse-grained) (n=26) 

Figure 278: Box and whisker plots for groundwater K+ concentration in the recharge area of the 
prevailing lithostratigraphic unit 
 
Aquifer porosity type 
 
The highest groundwater K+ concentrations are observed in aquifers with intergranular porosity (Fig. 279, 
Appendix 13R) which are due to their permeability and porosity, open to anthropogenic sources and 
therefore very vulnerable. Groundwater K+ concentrations measured in aquifers with intergranular porosity 
are significantly higher (p<0.05) compared to aquifers with karstic and fractured porosity where the lowest 
groundwater K+ concentrations are observed. This is because of absense ob anthropogenic and also 
urban activities in those areas, as well as the lack of K-bearing minerals in the host rocks.  
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A = intergranular porosity (n=39) 
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D = karstic and fractured porosity 
(n=74) 
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Figure 279: Box and whisker plots for groundwater K+ concentration in the recharge area of the 
prevailing aquifer porosity type 
 
Land cover/use 
 
The highest groundwater K+ concentrations (Figs. 280 and 281, Appendix 13R) are measured in the 
recharge areas of non-irrigated areas which are significantly higher (p<0.05) compared to groundwater 
sampled from other recharge areas according to CORINE Land Cover use classes. In non-irrigated 
recharge areas the source of potassium is in the intense use of nutrients and plant protection products. 
The lowest groundwater K+ concentrations are observed in the recharge area of bare rocks, marshes and 
heaths, and natural meadow and forests, where the human impact is less pronounced. 
According to Actual agricultural and forest land usage classification groundwater K+ concentrations in the 
recharge areas of intense use of nutrients and plant protection products are significantly higher (p<0.05) 
compared to other classes, suggesting major souces of potassium in the groundwater from fertilizers.  
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B = marshes and heaths (n=2) 
C= natural grassland (n=2) 
D = coniferous forest (n=20) 
E = broad-leaved forest (n=45) 
F = mixed forest (n=56) 
G = non-irrigated arable land 
(n=10) 
H = Complex cultivation patterns 
(n=18) 
I = land principally occupied by 
agriculture, with significant areas 
of natural vegetation (n=10) 
J = industrial or commercial units 
(n=2) 
 

Figure 280: Box and whisker plots for groundwater K+ concentration in the recharge area of the 
prevailing land use type (CORINE Land Cover)  
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silicate minerals) in clastic sedimentary rocks. Beside minor geogenic source from silicate weathering or 
from the sea, mostly intense agricultural activities and consequently excessive use of fertilizers in this area 
add its source to groundwater. Sampling location OV-29 Brunšvik, where in the vicinity intense horticulture 
takes place (arable land with ornamental plants and vegetables growth), at sampling location Padiščak 
(orchards and olive groves), and VG-10 Mala Goba (arable land and orchards), increased anthropogenic 
influence can be observed. High groundwater K+ concentrations suggest strong impact of use of fertilizers 
containing potassium or waste water.  
In more than ⅓ of sampling locations groundwater K+ concentrations was below LOD (½ LOD = 0.125 
mg/L). Low groundwater K+ concentrations (<0.5 mg/L) are observed in the high mountain Karst and in 
classic Dinaric Karst where human impact is less  pronounced as well as the lack of K-minerals in 
carbonate rocks (Fig. 285).  
 

 
Figure 285: Spatial distribution of groundwater K+  
 
 
4.7.7. Sulphate (SO4

2-) in groundwater  
 
Descriptive statistics of groundwater SO4

2- 
 
Groundwater SO4

2- concentration ranges between 0.75 and 67.40 mg/L, with mean value of 10.05 mg/L 
and median 5.66 mg/L (Tab. 39). Groundwater SO4

2- concentration is not normally distributed (Fig. 286) 
and concentrations above 18.10 mg/L present outliers and extremes (Fig. 287). This groundwater was 
sampled at sampling locations Pasji rep, Trate, Vt-1 Tinsko, LMV-1, V-6 Skorba, Mošenik, Maver, OV-29 
Brunšvik, Vidovič, Trgovina Vurberk, Mošenik, Gradišče, BLP-2 Nedelica, Padiščak, Vidovič, Strahinec, 
located throughout the Slovenian territory. Analytical uncertainty for groundwater SO4

2- is between 4.4 and 
45 % (n=171) and groundwater SO4

2- concentration below LOD (½ LOD=0.375 mg/L) is observed in 4 
groundwater samples from sampling locations Soča, Gljun, Zadlaščica, and Bohinjska Bistrica, all located 
in the NW part of the country. None of water samples exceeds the allowed maximum level for drinking 
water (250 mg/L) according Rules on drinking water (2004).  
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Table 39: Descriptive statistics of groundwater SO4
2- concentration 

Parameter n X Md Min Max S 

SO4
2- (mg/L) 175 10.05 5.66 0.75 67.40 11.49 
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Figure 286: Histogram for groundwater SO4
2-

concentration (n=175). 
Figure 287: Box and whisker plot for 
groundwater SO4

2- concentration (n=175). 
 
None of groundwater samples (n=175) exceed the quality standard for drinking water (> 250 mg/L) (Rules 
on drinking water, 2004). 
 
Rock type  
 
The highest groundwater SO4

2- concentrations and the highest variance in distribution of concentration is 
observed in the recharge areas with clastic sedimentary rocks (Fig. 288, Appendix 13S) which are 
significantly higher (p<0.05) compared to other recharge areas of other rock types. The source of 
groundwater SO4

2- concentration is probably in the mineralogical composition of silicate and carbonate 
rocks (outliers at sampling location Strahinec). In the recharge areas of carbonate rocks the sources are 
possible evaporate minerals in limestones and dolomites where moderate correlation exists between 
SO4

2- and EC (rs=0.58, p<0.05) and SO4
2- and Ca2+ (rs=0.52, p<0.05). The outliers belong to sampling 

location Mazej, and extreme concentrations are observed at sampling locations Trate, Velika Toplica, 
Pasji rep, Vt-1 Tinsko, Maver and Mošenik. In the recharge areas of igneous and metamorphic rocks the 
possible source is in metal sulphides and silicate minerals (outlier at sampling location Berglez).  
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A = clastic sedimentary rocks 
(n=53) 
B = carbonate rocks (n=110) 
C = igneous and metamorphic 
rocks (n=12) 
 

Figure 288: Box and whisker plots for groundwater SO4
2- concentration in the recharge area of 

major rock types 
 
The highest groundwater SO4

2- concentrations are observed in the recharge area with Miocene clastics, 
Eocene flysch rocks, and Oligocene clay “sivica” which are significantly higher (p<0.05) compared to 
groundwater with recharge areas with Permian Val Gardena layers, Jurassic carbonates, Cretaceous 
carbonates, Ladinian igneous rocks, Miocene clastics, Oligocene igneous rocks, old Paleozoic rocks, and 
Triassic carbonates (Figs. 289 and 290, Appendix 13S). Increased groundwater SO4

2- concentration in the 
recharge areas with Eocene flysch rocks is observed at sampling location Padiščak near the coast. 
Possible sources are from weathering of sulphide minerals — oxidation of pyrite in the zone of flysch 
weathering - sandstone (Košir et al., 2013) which may not be homogeneously distributed in the aquifer. 
Similar increased SO4

2- concentrations were obtained during investigations for the 2nd train rails Divača-
Koper in the near vicinity (Divača – Črni kal) by Lapanje and Prestor (2011). Additionally, Zupan Hajna 
(2005) suggests that the sources of SO4

2- concentration in Slovenian caves in the Eocene flysch 
sediments originate from impurities in limestone, from sulphide deposits, and volcanic rocks. It is also 
possible that groundwater in the recharge areas of Istrian flysch has naturally somewhat elevated 
groundwater SO4

2- concentration compared to Brkini flysch. Namely mineralogical composition of Istrian 
flysch and Brkini flysch differs (Zupančič and Pirc, 1999), where in Istrian flysch carbonates dominate and 
in Brkini flysch silicates. Flysch rocks are mostly impermeable for water and flysch sequences are rich in 
carbonate and quartziferous minerals (Pavlovec, 1977; Knez and Slabe, 2009). Other possible natural 
sources, which could increase groundwater SO4

2- concentration, are coal layers where boreholes are 
drilled, or the vicinity to the seaside. Low groundwater SO4

2- concentrations are observed in the recharge 
of limestones, dolomites, carbonates with clastics, and igneous and metamorphic rocks. In the recharge 
areas with carbonate rocks several outliers and extremes are observed (Velika Toplica, Vt-1 Tinsko, 
Mošenik). It is belived the limestones and dolomite in the recharge areas of sampled groundwater could 
contain gypsum, like in the case of sampling location Mošenik near Karavanke tunel (Brenčič and Poltnig, 
2008; Vidrih, 2006) 
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A = flysch rocks (n=7) 
B = clay (n=2) 
C = gravel and sand (n=26) 
D = gravel, sand and clay (n=11) 
E = shale and sandstone (n=7) 
F = limestone prevailing (n=74) 
G = dolomite prevailing (n=30) 
H = carbonates with clastics (n=6) 
I = igneous rocks (n=8) 
J = metamorphic rocks (n=4) 
 

Figure 289: Box and whisker plots for groundwater SO4
2- concentration in the recharge area of the 

prevailing lithological unit  
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A = old Paleozoic rocks (n=4)  
B = Carboniferous-Permian beds 
(n=5) 
C = Permian Val Gardena layers 
(n=2) 
D = Ladinian igneous rocks (n=2) 
E = Triassic carbonates (n=70) 
F = Jurassic carbonates (n=8) 
G = Cretaceous carbonates 
(n=28) 
H = Eocene flysch rocks (n=7) 
I = Oligocene igneous rocks (n=6) 
J = Oligocene clay “sivica” (n=2) 
K = Miocene Lithothamnium  
limestone (n=4) 
L = Miocene clastics (n=4) 
M = Pliocene clastics (n=7) 
N = Quaternary clastics (medium- 
and coarse-grained) (n=26) 

Figure 290: Box and whisker plots for groundwater SO4
2- concentration in the recharge area of the 

prevailing lithostratigraphic unit 
 
 
Aquifer porosity type 
 
Groundwater SO4

2- concentrations in aquifers with intergranular porosity are significantly higher (p<0.05) 
compared to groundwater from aquifers with other porosity types (Fig. 291, Appendix 13S) which suggest 
anthropogenic influence on vulnerable alluvial aquifers.  
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A = intergranular porosity 
(n=39) 
B = fractured porosity (n=26) 
C = fractured and karstic 
porosity (n=30) 
D = karstic and fractured 
porosity (n=74) 
E = mixed porosity (karstic, 
fractured, intergranular) (n=6) 

Figure 291: Box and whisker plots for groundwater SO4
2- concentration in the recharge area 

of the prevailing aquifer porosity type 
 
Land cover/use 
 
Increased groundwater SO4

2- concentrations are observed in the recharge areas of industrial and 
commercial units which are significantly higher (p<0.05) compared to groundwater in moors and 
heathland, and in the recharge areas with non-irrigated arable land which are signifinatly higher (p<0.05) 
compared to groundwater in natural grasslands (Figs. 292 and 293, Appendix 13S). This suggests that 
sources of SO4

2- concentration in groundwater are mosty due to use of various fertilizers which is 
supported by moderate correlations between groundwater SO4

2- and Na+ (rs=0.61, p<0.05; Fig. 294), K+ 
(rs=0.58, p<0.05; Fig. 295), Cl- (rs=0.58, p<0.05; Fig. 296), and NO3

- (rs=0.55, p<0.05; Fig. 297) observed 
at sampling locations Strahinec, Vidovič, Gradišče, BLP-2 Nedelica, C-4 Domžale, and OV-29 Brunšvik, 
all located in the NE part, and Padiščak located near the coast). In other lithological and lithostratigraphic 
classes groundwater SO4

2- concentration is low. An outlier in recharge area of bare rocks is found at 
sampling location Mošenik, in the recharge area of coniferous forest the outlier is found in Berglez, and 
extreme values at sampling location V-6 Skorba. In the recharge area of broad-leaved forest the outlier is 
found at sampling location Trate and extreme values in Pasji rep and Trate, and outliers in the recharge 
area of mixed forest are found at sampling locations VT-1 Tinsko, and extremes in Trgovina Vurberk, and 
Padiščak. 
 
According to recharge areas after Actual agricultural and forest land usage classification type groundwater 
with recharge areas of intense use of nutrients and plant protection products is significantly higher 
(p<0.05) compared to other classes.   
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A = bare rocks (n=8) 
B = moors and heathland (n=2) 
C= natural grasslands (n=2) 
D = coniferous forest (n=20)  
E = broad-leaved forest (n=45) 
F = mixed forest (n=56) 
G = non-irrigated arable land 
(n=10) 
H = complex cultivation patterns 
(n=18) 
I = land principally occupied by 
agriculture, with significant areas 
of natural vegetation (n=10) 
J = industrial or commercial 
units (n=2) 

Figure 292: Box and whisker plots for groundwater SO4
2- concentration in the recharge area of 

the prevailing land use type (CORINE Land Cover) 
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A = forest (n=137) 
B = areas of less intense 
use of nutrients and plant 
protection products (n=18) 
C = areas of intense use of 
nutrients and plant 
protection products (n=16) 
D = urban areas (n=2) 
 

Figure 293: Box and whisker plots for groundwater SO4
2- concentration in the recharge area of 

the prevailing land use type (Actual agricultural and forest land use) 
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Spatial distribution of groundwater SO4
2-  

 
High groundwater SO4

2- concentrations (>20.00 mg/L) are observed in the NE, E, and coastal part of the 
study area (Fig. 301) which are mostly associated with anthropogenic source due to intensive agricultural 
activities (use of fertilizers). Around bigger and densely populated cities like e.g. Ljubljana (central), 
Maribor (NE) and others, the additional source of groundwater SO4

2- concentrations could be due to 
emission of SO2. In the N part of Slovenia (Karavanke Mts.) the source of groundwater SO4

2- 
concentrations is possible geogenic (dissolution of gypsum). Also in the coastal part the source is possible 
also geogenic, either from the seawater influences, or weathering of sulphide minerals.  
Low groundwater SO4

2- concentrations (<5.00  mg/L) are observed in the high mountains in NW part, and 
in low karst region in central and E part of the study area due to lack of intense agricultural and urban land 
uses in the recharge areas. Very low groundwater SO4

2- concentrations are also observed in older 
groundwaters (NE), which is possible due to degradation through natural reduction reactions.  

 
Figure 301: Spatial distribution of groundwater SO4

2-  
 
 
4.7.8. Trace constituents in groundwater  
 
4.7.8.1. Iron (Fe) in groundwater 
 
Groundwater Fe ranges between 10 and 132 µg/L with mean value of 36 µg/L and median 28 µg/L (Tab. 
40). Groundwater Fe is not normally distributed (Fig. 302) and values above 94 µg/L present outliers and 
extremes (Fig. 303). In 123 groundwater samples the concentration of Fe was below LOD. None of water 
samples exceeds the allowed maximum level for drinking water (200 μg/L) according Rules on drinking 
water (2004). 
 
Table 40: Descriptive statistics of groundwater Fe concentration 
Parameter n X Md Min Max S 

Fe (µg/L) 51 36 28 10 132 27 
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Figure 302: Histogram of groundwater Fe 
concentration (n=51) 

Figure 303: Box and whisker plot for 
groundwater Fe concentration (n=51) 

 
The highest groundwater Fe concentrations (>70 µg/L) are observed at sampling locations B-9 Brestovica 
and NG-4 in the W part of the country (Fig. 304), which is possible due to type of material used for casing 
the borehole (steel). In this sampling location another additional possible source of iron could be due to 
limonite impregnation in carbonate rocks (Orehek, 1981). In deep aquifers (sampling locations GRAD-1 
Grad and DEV-1 Desenci) in the NE part the source of Fe in (old) groundwater is probably due to 
reduction of Fe (>40 mg/L).  
In other locations the level of Fe concentration is low due to prevailing oxidising conditions in observed 
aquifers. 
 
Redox-sensitive solutes are e.g. As, Fe, Mn, NO3

−, NH4
+, SO4

2−, therefore they are included in the 
interpretation for observations of redox conditions. 
 

 
Figure 304: Spatial distribution of groundwater Fe  
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4.7.8.2. Manganese (Mn) in groundwater 
 
Groundwater Mn ranges between 0.03 and 22.11 µg/L with mean value of 0.82 µg/L and median 0.23 
µg/L (Tab. 41). Groundwater Mn is not normally distributed (Fig. 305), and values above 0.89 µg/L present 
outliers, and extremes (Fig. 306). In only 6 groundwater samples the conventration of Mn was belod LOD 
(½ LOD = 0.025 µg/L). None of water samples exceeds the allowed maximum level for drinking water 
(50 μg/L) according Rules on drinking water (2004).  
 
 
Table 41: Descriptive statistics of groundwater Mn concentration 
Parameter n X Md Min Max S 

Mn (µg/L) 174 0.82 0.23 0.03 22.11 2.55 
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Figure 305: Histogram of groundwater Mn 
concentration (n=174) 

Figure 306: Box and whisker plot for 
groundwater Mn concentration (n=174) 

 
Increased groundwater Mn concentrations (>1.00 µg/L) are observed in the NE part of the study area (Fig. 
307), and near the coast. According to older groundwater from deeper aquifers (NE part) the highest Mn 
concentrations were measured at sampling location GRAD-1 Grad (As and NH4

+ below LOD; Fe above 
LOD) and DEV-1 Desenci (As and Fe above LOD; NH4

+ below LOD). It is believed that the source of Mn 
is increased due to strong reductive environment in deeper parts of aquifer. Lower groundwater Mn 
concentrations are observed in another old groundwater from sampling location VP-1 Prosenjakovci, 
which is younger, compared to GRAD-1 Grad and DEV-1 Desenci. This might be the reason for lower Mn 
concentration in groundwater. In the E side of the study area groundwater from sampling location Vidovič 
suggest the redox conditions in groundwater (NH4

+ and Fe above LOD; As below LOD). At sampling 
location LMV-1 Ljubljana also enriched values of Mn are observed. Šajn et al. (1998) also observed 
elevated Mn concentrations in soil. Possible source is leakage from anaerobic layers where the soluble 
Mn2+ is present. Another possible source is due to use of fertilizers, or from sewage sludge. 
In other groundwater samples Mn concentration was generaly low. 
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Figure 307: Spatial distribution of groundwater Mn  
 
4.7.8.3. Chromium (Cr) in groundwater 
 
Groundwater Cr concentration varies between 0.5 and 42.0 µg/L, with mean value of 1.7 µg/L and median 
0.7 µg/L (Tab. 42). In 116 groundwater samples the concentration was below LOD (0.5 µg/L). 
Groundwater Cr concentration is not normally distributed (Fig. 308) and values above 1.3 µg/L present 
outliers and extermes (Fig. 309). In 97 groundwater samples the concentration of Cr was below LOD (½ 
LOD=0.025). None of water samples exceeds the allowed maximum level for drinking water (50 μg/L) 
according Rules on drinking water (2004). 
 
Table 42: Descriptive statistics of groundwater Cr concentration 
Parameter n X Md Min Max S 

Cr (µg/L) 77 1.7 0.7 0.5 42.0 5.7 
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Figure 308: Histohram for groundwater Cr 
concentration (n=77) 

Figure 309: Box and whisker plot for 
groundwater Cr concentration (n=77) 

 
Groundwater Cr concentrations 1 µg/L are found in groundwater from sampling locations: VP-1 
Prosenjakovci, Framski slap, Grad-1 Grad, in the NE, NG-4 on the W, and C-4 Domžale and LMV-1 
Ljubljana in the centre (Fig. 310). LMV-1 Ljubljana has the highest groundwater Cr concentrations (mean 
value is 35.3 µg/L). Ljubljana polje aquifer has been contaminated with Cr6+ in the past (1985), where the 
primary sources of pollution are emissions of galvanization plants at the pumping station where 
aggressive sewage has damaged the sewer systems and caused its spillage into the underground (Brilly 
et al., 2003). Increased concentration of Cr6+ are gradually declining in Kleče pumping station, and are 
increasing in Hrastje pumping station (Rejec-Brancelj et al., 2005). Increased Cr groundwater values at 
sampling location LMV have also been observed by others (Jazbinšek Seršen et al., 2010; Urbanc et al., 
2010; Janža, 2013). Also from sampling location C-4 Domžale, the source is interpreted to be of 
anthropogenic origin. The source of Cr in groundwater from sampling location GRAD-1 Grad is possibly 
geogenic where Cr could origin from gravel, sand, and clay rocks, or organic matter (coal layers).  

 
Figure 310: Spatial distribution of groundwater Cr  
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5. CONCLUSIONS 
 
The main aim of the study was to identify, evaluate, and define the main factors controlling groundwater 
chemical and isotopic composition in Slovenian groundwaters. For this purpose groundwater was sampled 
at 87 sampling locations evenly distributed throughout the Slovenian territory, considering aquifers 
composed of the most representative lithological and lithostratigraphic units present in Slovenia.  
 
For each sampling location its recharge area was determined according to aquifer type from which 
groundwater was sampled. The main factors considered were the aquifer’s lithological and 
hydrogeological structure and its characteristics, the topology of terrain, active water protection areas, 
past tracer tests results, past hydro-contours, orographic watersheds and borders of groundwater bodies 
and aquifer systems. Based on determined sampling location’s recharge areas several GIS based spatial 
analyses were preceded: mean altitudes, mean air temperature, mean amount of precipitation, distance 
from the sea, lithological and lithostratigraphic structure, and various types of land uses.  
 
A thorough examination of results showed that chemical and isotopic parameters in groundwater vary 
according to geological or hydrogeological conditions in the recharge areas of aquifers. This has been 
proven with help of geostatistical, hydrogeochemical and hydrogeological data analysis. Statistical data 
analyses suggest that correlations between measured groundwater parameters are hydrochemically 
meaningful, describing the existing conditions of groundwater chemistry: carbonate and silicate 
dissolution, influence of organic matter in the soil layers, redox conditions in deeper aquifers, and 
anthropogenic influence. 
 
Based on the groundwater 3H activity, the sampled groundwater has been categorised as modern, 
submodern (up to 50 years), and old groundwater. The study is focused on groundwater sampled from 
shallow aquifers which has been confirmed by the 3H activity measured in precipitation. Mean 3H activity in 
recent precipitation in Ljubljana (2002—2006) is 9.0 TU, and has decreased in the last few years (5.0—9.0 
TU). Similar 3H activity is reflected in sampled groundwater with mean 3H activity of 6.20 TU. Low 3H 
activity (<2.00 TU) is observed in old groundwaters from deeper aquifers, and higher 3H activities (>8.00 
TU “nuclear bomb tritium”) in sub-modern groundwater. Sub-modern groundwaters have somewhat longer 
residence time, most possible due to poorly permeable rocks in their recharge areas.    
 
The most enriched in 18O is groundwater at low elevations in the coastal areas while groundwater at 
higher altitudes and in the inner part of the country (with increasing distance from the seaside) is 
isotopically depleted in 18O. Similar are observations of δ2H in sampled water. Based on the groundwater 
isotopic data and the geographic and climatic diversity of the study area, three different isotopic altitude 
effects zones were defined, following the precipitation intensity pattern with general direction of SW-NE. 
The isotope altitude effect for Alps and Coastal region is -0.25 ‰ δ18O/100 m, for the Štajerska and 
Dolenjska regions it is -0.27 ‰ δ18O/100 m, and for the Bela krajina region -0.33 ‰ δ18O/100 m. 
Furthermore the isotopic composition of groundwater is plotted mostly between GMWL and EMMWL 
suggesting the groundwater reflects the isotopic composition of precipitation discharging mostly from 
Atlantic air masses, as well as from the Mediterranean basin, which has been indicated by higher 
d-excess values (> 10 ‰). Comparison between groundwater δ18O and distance from the Adriatic Sea to 
Prekmurje region (SW-NE direction) indicates the presence of a strong 18O isotope effect, with a value 
around -8.30 ‰ δ18O/1000 km. The magnitude of estimated effect is larger in comparison to precipitation 
isotope continental effects found in neighbouring countries. This could be due to Slovenian specific 
topography where air masses are influenced by relatively high altitude mountains not far from the coastal 
area. Additional comparison between mean annual air temperature of recharge area and groundwater 
isotopic composition has revealed, that groundwater from colder areas is isotopically depleted as 
compared to groundwater in lowlands. This is a consequence of the isotope altitude effect. The 
groundwater isotope temperature gradient was estimated and is around 0.25 ‰ δ18O/°C. Finally, 
groundwater in lowlands/valleys has lower d-excess values compared to groundwater in high mountain 
regions, which could be a result of isotopic fractionation during orographically uplifted air masses, or of 
other processes.  
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Most of Slovenian groundwaters are of Ca2+-Mg2+-HCO3
- and Ca2+-HCO3

- water type, dominated by earth 
alkali elements and weak acids. Few other water types are also observed, e.g. Na+-Ca2+-Mg2+-HCO3

-, 
Ca2+-Mg2+-HCO3

--NO3
-, Ca2+-Na+-HCO3

-, Ca2+-HCO3
--SO4

2-, and Ca2+-Mg2+- HCO3
--SO4

2-. Beside earth 
alkali elements and weak acidic anions, they also contain either alkali metals or strong acidic anions. In 
addition to ionic pattern and hydrogeochemical facies it can be concluded that sampled groundwater is 
predominantly controlled by the CaCO3-CO2-H2O system where Ca2+, Mg2+, and HCO3

- are the major 
components present in various combinations.  
 
Groundwater in the recharge areas of carbonate rocks is generally supersaturated (SI>0) with respect to 
calcite and dolomite, and undersaturated (SI<0) with respect to both carbonate minerals in the recharge 
areas of silicate rocks (igneous and metamorphic rocks, and less permeable clastic sedimentary rocks). 
 
Alkaline groundwater (pH>7.75) is observed in the high mountain regions dominated by carbonate rocks. 
Since the soil layers are usually very thin, also the microbiological activity is low. In the karstic mountain 
regions vegetation cover is low, but the amount of precipitation is usually high. Karstic aquifers are very 
open to the atmosphere. In these regions less human impact is observed. Slightly acidic groundwater 
(pH<7.25) is observed in the NE part of the country due to mostly prevailing silicate mineral composition of 
rocks in the recharge areas of igneous and metamorphic rocks, and clastics. In Podravje and Pomurje 
region (NE part) the soil acidity could be augmented by various agricultural practices where farmers 
fertilize soil with slurry or manure, or the soil is neutralized by application of lime. Additionaly, leaching 
from septic tanks or sewage systems can also affect groundwater pH.  
 
Groundwater EC is increased in the alluvial plains towards NE and E, and in the coastal area (>800 
µS/cm). Groundwater with increased EC occurs due to increased concentrations of soluble ions, which 
solution is also conditioned by the soil thickness and temperatures, and other climate factors.  
Additionally, EC could be influenced by the agricultural and urban land use. The lowest groundwater EC 
(<200 µS/cm) is observed in the high mountain regions due to thin (or non-existent) soil layer and 
consequently very little vegetation cover. The level of respiration of soil organisms and the decay of 
organic matter in the soil is low, therefore less H2CO3 needed for rock dissolution is formed. Also air 
temperatures and PCO2 are low, and frequent surface runoff during heavy rain or snowmelt is present.  
 
Carbonate geochemistry (Ca2+, Mg2+, Ca2+/Mg2+ molar ratio, HCO3

- and CaCO3, and PCO2) depends 
mostly on the aquifer lithology with the carbonate mineralogical rock composition (calcite and dolomite) 
and carbonate cement as the main contributors to groundwater hardness. The lowest groundwater 
concentrations of Ca2+ (<24 mg/L), Mg2+ (<6.0 mg/L), and HCO3

- (<140 mg/L) are observed in the NNE, 
NE, and central part of the country (recharge areas of shale and sandstone, gravel, sand, and clay, and 
igneous and metamorphic rocks). Groundwater Ca2+ and Mg2+ concentrations in high mountain karst (NW 
and N part) with the carbonate rocks in the recharge area are usually also low. This is a result of thin (or 
non-existent) soil layer and low atmospheric CO2, which is one of the dominant drivers for carbonate 
dissolution. Additionally, low temperatures, and groundwater dilution by heavy precipitation water in high 
mountains influence the groundwater chemical and isotopic composition, together with elevated relief and 
tributaries of various streams. The rate of mineral weathering depends on the natural acidity of dissolved 
H2CO3 in the water which could be enhanced by the additional soil CO2 (respiration and oxidation of 
organic matter), but is low due to thin soil thickness in the high mountain regions. The highest 
groundwater Ca2+ (>85 mg/L), Mg2+ (>25.0 mg/L), and HCO3

- (>420 mg/L) concentrations are observed in 
the NE part of the country due to prevailing carbonate minerals and cement in the recharge areas, as well 
as thick soil layer and higher soil temperatures. In a few sampling locations the additional anthropogenic 
source is observed. Highly mineralized groundwater is observed in the recharge area of carbonate and 
clastic sedimentary rocks (NE, central, and SW part). Because Slovenia is rich in carbonate rocks, the 
medium hard water prevails in Slovenian groundwaters. Further high groundwater Ca2+/Mg2+ molar ratios 
are observed in the recharge areas of calcium-rich rock, e.g. limestones, flysch rocks, carbonates with 
clastics, and clay. Low groundwater Ca2+/Mg2+ molar ratios are found in the recharge areas of dolomite 
prevailing and shale and sandstone. Groundwater HCO3

- from the carbonate recharge areas suggests 
good correlations with pH where higher PCO2 content dissolves more carbonate minerals than water with 
low PCO2 which is observed in high mountain regions with lower soil CO2. Relation between groundwater 
HCO3

- and mean altitude of recharge areas also suggests that lower groundwater HCO3
- concentrations 
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are measured at higher altitudes (colder air areas) and vice versa as a consequence of mineralogical 
composition, higher soil and atmospheric CO2, vegetation cover, and other climatologic conditions in the 
recharge areas. Beside carbonate minerals also silicate minerals can contribute to groundwater Ca2+ and 
Mg2+ concentration, but are due to low and slow mineral weathering less significant. Groundwater Ca2+, 
Mg2+, and HCO3

- concentration could be also influenced by the anthropogenic activities in the recharge 
area. The use of fertilizers, construction material, and lime can influence the rise of groundwater Ca2+, 
Mg2+, and HCO3

- concentrations, mostly in the NE part of the country where the soil is more acidic and 
agricultural activities are intense.    
 
Based on the measured groundwater HCO3

- concentrations the initial soil CO2 partial pressure was 
calculated. Calculated soil PCO2 content for closed system is much higher compared to content for open 
system.  Calculated initial PCO2 for both, open and closed, systems were compared to soil PCO2 content 
measured on various locations around Slovenia. This reference soil PCO2 content coincides with calculated 
soil PCO2 content for open systems. Therefore dissolution of carbonates in sampled groundwater is 
assumed as an open system dissolution model. The lowest calculated initial soil PCO2 is observed in 
groundwater in high karstified mountains and low karst areas where in the recharge areas mostly bare 
rocks with thin layer of soil (lithosol) or forest cover are observed. Groundwater in this area has usually 
low initial soil CO2 partial pressure most possible due to higher relative portion of atmospheric CO2. High 
calculated initial soil PCO2 content (>3 vol. %) is observed in the E part of Slovenia. Recharge areas of 
those sampling locations are at lower altitudes, covered with thicker soil layer rendzina and brown soils 
type which developed on the carbonate rocks. High soil PCO2 contents are possible due to various 
reasons: the altitude and the air temperature of recharge areas, the content of measured groundwater 
ions (increased mineralization), and from CO2 from deeper depths which make groundwater mineral and 
increases the carbonate content, and influences the groundwater in the shallow aquifers. 
 
Groundwater DIC concentration in the high mountain regions (N and NW part) is enriched in 13C (>-5 ‰) 
due to greater influence of atmospheric CO2, thin (or non-existent) soil layer, carbonate rocks in the 
recharge area, and groundwater dilution by precipitation water. This groundwater usually contains low 
HCO3

- concentration compared to groundwater in the lowland, which is rich in carbonate-bearing rocks 
with higher groundwater HCO3

- concentrations. This is because this groundwater is more influenced by 
the degradation of organic matter and leaching of CO2 from thicker soil layers. Most depleted in 13C 
(<-15‰) is groundwater DIC in the recharge areas of less permeable silicate rocks located in higher 
altitudes. Soil CO2 and the influence from the atmosphere mostly contribute to DIC concentration. Also 
depleted in 13C is groundwater DIC in the NE part of Slovenia where the concentration of HCO3

- is higher 
and the δ13C-DIC is less negative due to the dissolution of smaller proportion of carbonate minerals and 
carbonate cement. Groundwater δ13C-DIC values from deep aquifers suggests leaching of upper shallow 
groundwater into deeper aquifer, or the proportional share between soil CO2 and minor share of carbonate 
component dissolution. In the karstic aquifers where water was sampled as surface water, it is enriched in 
13C due to possible degassing of CO2 to the atmosphere and air-water isotopic exchange of carbon 
causing a loss of 13C depleted DIC. In the S, SE, central, and NE parts of the studied area, the influence 
from both, dissolution of carbonate minerals and influence from the soil CO2 is suggested. In Slovenian 
groundwaters the most important processes influencing groundwater according to DIC and δ13C-DIC in 
high mountains are dissolution of carbonate minerals which enrich groundwater DIC in 13C, and and the 
partial pressure of atmospheric CO2 which depends on the altitude air temperature. In groundwater 
recharge areas of lowlands dissolution of carbonates play an important role as well as soil partial pressure 
of CO2 which depends on the altitude, air temperature, and vegetation cover.  
 
The source of Si in groundwater is almost exclusively and unequivocally a result of water-rock interaction. 
This has been verified with a simple modelling which results suggest that the main source of Si in 
groundwater is silicate weathering. Increased groundwater Si concentrations (>6.00 mg/L) are observed in 
the NE part of the country in the shallow and deep aquifers, at Pohorje Mt., and in few other sampling 
locations where silicate minerals in the recharge areas of clastic sedimentary, igneous, and metamorphic 
rocks prevail. Low groundwater Si concentration (<3.00 mg/L) is observed in all other parts of Slovenia 
due to prevailing carbonate rocks in the recharge areas.  
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The main sources of Na+ and Cl- in Slovenian groundwaters are anthropogenic as a result of agricultural 
and urban land uses. Increased groundwater Na+ (>10.0 mg/L) and Cl- (>15.00 mg/L) can occur due to 
excessive use of fertilizers, slurry and/or manure on the fields, orchards, vineyards, and gardens. 
Additionally, increased groundwater Na+ and Cl- are also due to use of salts for deicing roads which are 
mostly dense in the big cities above highly vulnerable alluvial aquifers. Other important anthropogenic 
sources of groundwater Na+ and Cl- are also leakages from sewage systems or septic tanks (mostly in the 
NE part of the country). Natural sources of both ions are less pronounced but also important, like the 
influence from the seaside as precipitation or sea spray, and ion exchange for Na+ in the recharge areas 
of clay. Sources of silicate rocks weathering are subordinate compared to anthropogenic influences. 
Lower groundwater Na+ (<2.0 mg/L) and Cl- (<2.00 mg/L) concentrations are observed in the recharge 
areas with carbonate rocks in the NW and N part of the country mostly due to prevailing carbonate 
minerals in the recharge areas, groundwater dilution by heavy precipitation (increased in NW and N part of 
the country), and lower level of urban and agricultural activities. In the lowlands in the SE and E parts with 
mostly carbonate rocks in the recharge areas the concentrations of both ions is slightly increased most 
possible due to anthropogenic influence. Natural background level for groundwater Na+ is 1.5 mg/L and for 
Cl- 1.72 mg/L.   
 
Main groundwater NO3

- sources are anthropogenic which include the (excessive) use of nitrogen (organic 
and synthetic) fertilizers, or leakages from septic tanks or sewage systems. Concentrations of NO3

- in 
groundwater depend mostly on the type of land use in the recharge area, especially on the intensity of 
fertilizers usage. The natural background level for groundwater NO3

- was estimated only for groundwater 
in shallow aquifers and is 3.81 mg/L. Since agricultural activities are mostly present in lowlands, increased 
groundwater NO3

- concentrations (>50.00 mg/L) are observed in the intergranuar aquifers along larger 
rivers (central, E, and NE part). Groundwater NO3

- concentration in the NW, W, and NNE part are low 
(<3.00 mg/L) because agricultural land use is not intense. Low groundwater NO3

- concentrations are also 
observed in groundwater from deeper aquifers (<3.00 mg/L) most possibly due to low initial NO3

- 
concentrations or due to denitrification processes in the groundwater recharge areas. In addition to NO3

- 

the occurrence of NH4
+ in groundwater is perhaps due to excessive use of inorganic or organic fertilizers 

(ammonium sulphate, manure or slurry), especially in the late summer together with increased 
groundwater NO3

- concentration. The presence of NH4
+ in groundwater is also possible because of 

reduced access of oxygen in to water (reductive environment).   
Groundwater depletion in 15N suggests the origin of nitrogen in groundwater is of naturally occurring 
nitrate in precipitation and soil organic matter observed mostly in the NW and NNE part of the study area. 
In the NW part groundwater is depleted in 15N (<-1.0 ‰) because of alpine vegetation and thin soil layer, 
whereas in the recharge areas of forest vegetation in high mountains with thick soil layer the groundwater 
is slightly enriched in 15N (<2.5 ‰) with prevailing natural nitrogen from soil. The most enriched in 15N 
(>10.0 ‰) is groundwater in lowlands of alluvial plains in the NE and E part. Here intense agricultural 
activities are present, where the use of synthetic and organic fertilizers is observed. Application of manure 
on the fields or leakages in groundwater is possible. Groundwater in deeper aquifers is probably 
denitrified and enriched in 15N (5.0 – 7.5 ‰). 
 
Increased groundwater K+ concentrations (> 5.00 mg/L) are observed in lowlands in the NE part (Mursko 
polje and Dravsko polje aquifers). The source of groundwater K+ could be geogenic due to prevailing 
silicate rocks in the alluvial deposits in the recharge areas. But because of intense agricultural activities in 
this part of country and excessive use of nutrients and plant protection products, it is believed that silicate 
weathering is of minor importance as a source of K+ in groundwater. Also near the coast the original 
geogenic footprint from the sea in groundwater is also smudged due to possible use of fertilizers or waste 
water. Groundwater K+ concentrations are low (<0.50 mg/L) in the recharge area of carbonate rocks in the 
high mountain karst and in classic Dinaric (Dolenjska) karst due to lack of potassium-bearing minerals and 
minor impact of agricultural activities. The natural background level for K+ in Slovenian groundwaters is 
0.35 mg/L. 
 
Sources of SO4

2- in Slovenian groundwaters are mostly of anthropogenic origin where increased 
concentrations (>20.00 mg/L) are observed in the NE part of the study area due to use of fertilizers on 
agricultural land. Around densely populated regions the sources for increased groundwater SO4

2- 

concentrations could be due to SO2 emission. Geogenic sources of SO4
2- in groundwater are observed in 
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the N part of the country (Karavanke Mts.) as a consequence of dissolution of gypsum inclusions in the 
carbonate rocks, as well as near the coastal part because either from the seawater influences, or 
weathering of sulphide minerals. Low groundwater SO4

2- concentrations (<5.00 mg/L) are observed in the 
high mountains in NW part, and in low karstic regions in central and SE part of the study area, due to lack 
of intense agricultural and urban land uses, and silicate minerals in the recharge areas. Low groundwater 
SO4

2- concentrations are also observed in older groundwater which is possible due to degradation through 
natural reduction reactions. Natural background level for SO4

2- in Slovenian groundwaters is 6.93 mg/L. 
 
Although dissolved oxygen was not measured in the groundwater other observed parameters (Fe, Mn, As, 
and NH4

+) suggest a reductive groundwater environment. Since their concentrations in groundwater are 
very low, it is assumed that sampled groundwater is mostly oxidized.  
High groundwater Fe (>70 µg/L) is observed in the NW part because of type of material used for caving 
the borehole (steel), or due to limonite impregnation in carbonate rocks and rare brown limonite particles. 
In old groundwater from deep aquifers in the NE part of country the source of Fe (>40 mg/L) is probably 
the dissolution of Fe from rocks in the reducing chemical environment. In other locations Fe concentration 
is low (<10 µg/L) due to prevailing carbonate minerals in the recharge areas and oxidising conditions in 
the observed aquifers. 
Increased groundwater Mn concentrations (>1.00 µg/L) are observed in the NE part of the study area, 
near the coast, and in the central part of the country. In old groundwater (NE) the source is possible due 
to strong reductive environment in deeper parts of aquifer, and in the location near the coast the source of 
Mn could be related to organic matter in the water. In the central part the possible source of Mn in 
groundwater is leakage from anaerobic layers where the soluble Mn2+ is present. Other possible sources 
are also use of fertilizers, or leakages from sewage sludge. 
 
Increased groundwater Cr is observed in the central part of the country which is a consequence of 
groundwater contamination with Cr6+ in the past where the primary sources of pollution are emissions of 
galvanization plants, as well as other anthropogenic sources. In the NE part in groundwater from deeper 
aquifers the source of Cr is possibly of geogenic origin where Cr could be drived from gravel, sand, and 
clay rocks, or organic matter (coal layers).  
 
Main factors controlling Slovenian groundwaters geochemical composition are summarized in the 
following table. 
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Table 43: Main factors controlling Slovenian groundwaters geochemical composition 

 

SOURCE Natural Anthropogenic 

Factor 

lithology 
mineralogical 
composition, 

cement) 

climatic 
factors 

morphology 
(altitude) 

distance from 
the sea soil thickness 

type of 
vegetation 

cover 

amount of 
precipitation 

reductive 
environment 

natural 
fertilization 

deicing 
roads fertilizers lime 

application 

leakage from 
sewage system, 

septic tanks, waste 
waster 

casing 
material 

air 
pollution 

EC X X X X X  X   X X  X   

δ18O  X X X            

δD  X X X            

d-excess  X X X            

δ13C-DIC X X   X X X         

δ15Ntot      X  X X  X  X   
3H X 

              

Ca2+ X X X  X  X    X X    

Mg2+ X X X  X  X    X X    

Na+ X   X      X X  X   

K+ X 
  

X 
      

X 
 

X 
  

NH4+ 
       

X X 
 

X 
 

X 
  

HCO3- X X X 
 

X 
 

X 
    

X 
   

Cl- X 
  

X 
     

X X 
 

X 
  

NO3-         X  X  X   

SO42- X X 
 

X 
      

X 
   

X 

Si X X 
    

X 
        

As X       X        

B X          X  X   

Br X   X         X   

Cr X 
           

X 
  

Fe X       X      X  

Mn X       X   X     
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All above listed conclusions confirm the hypothesis, set at the begining of the research: 
 
→ the main natural factors controlling Slovenian groundwater chemical and isotopic composition are 

lithological composition of the aquifer recharge area and recharge area climatic conditions,  
 
Observations of chemical and isotopic composition in Slovenian groundwater in relation to 
lithostratigraphic composition and climatic conditions in groundwater recharge areas have confirmed the 
hypothesis, that natural groundwater geochemistry and isotopic composition are controlled in great extent 
by natural factors. Namely, groundwater Ca2+, Mg2+, HCO3

-, and Si concentrations mostly depend on the 
mineralogical composition of rocks in the recharge areas, and various climate conditions as well as other 
natural factors, e.g., the altitude, air temperature, the amount of precipitation, thickness of soil horizon and 
vegetation cover of groundwater recharge areas, and also distance from the sea. Groundwater isotopic 
composition (δ18O, δD, d-excess, and 3H) is being controlled by the direction of air masses, the amount of 
precipitation, altitude, air temperature, snow coverage, distance from the sea, and hydrogeological 
characteristics of the aquifer (permeability of rocks). Isotopic composition of groundwater δ13C-DIC 
depends on the thickness of soil horizon, mineralogical composition of rocks, and vegetation cover in 
groundwater recharge area. Groundwater δ15N is mostly controlled by the type of vegetation cover in 
groundwater recharge area. 
 
→ chemical composition of anthropogenically influenced  groundwater mostly depends on the land use in 

the groundwater recharge areas.   
 
Geochemistry of anthropogenically influenced groundwater has proven the hypothesis that the type of 
land use in the groundwater recharge areas influences the chemical composition of groundwater. In 
Slovenian groundwater the major anthropogenic factors influencing the groundwater chemical status are 
agricultural land use reflected in increased Na+, K+, NO3

-, Cl-, and SO4
2- concentration, and urban land use 

reflected in increased Na+, Cl-, and SO4
2- concentration. 

 
With respect to objectives: 

 
→ to determine the optimal methodology for geochemical research of Slovenian groundwater regarding 

the sampling network density, data processing, interpretation of results, and data presentation, 
 

The methodology for geochemical research of Slovenian groundwater, based on the sampling network 
density, data processing, interpretation of results, and data presentation, has proven to be useful and 
economic. Groundwater was sampled in the recharge areas of the most typical lithological and 
lithostratigraphic units present in Slovenia. Additionally, the sampling locations were evenly distributed 
throughout Slovenian territory and are located in aquifers with various porosity types. Groundwater in 
each sampling location was sampled twice in order to get a more typical groundwater value of studied 
parameters. Further the obtained results of groundwater chemical and isotopic composition were 
statistically processed where the most important correlations between measured parameters and in 
correlation with climatic factors, as well as land use data, were observed and interpreted. Finally, the 
methodology used has provided the data on the typical groundwater values of observed parameters as 
well as the natural background levels for chosen parameters. Final products are also hydrochemical 
thematic maps which provide the information on spatial distribution of observed parameters in Slovenian 
groundwaters.  Based on the available financial sources, sampling material, and time, it was possible to 
achieve predicted objectives. 

 
→ to identify typical Slovenian groundwater chemical and isotopic composition in relation to lithological 

and lithostratigraphic units,  
 
The study provides the information on typical groundwater (mean) values of observed groundwater 
chemical and isotopic parameters according to certain lithological and lithostratigraphic units, where the 
sources of natural and anthropogenic origin are combined due to land use. Each observed parameter was 
studied in detail, and its source was identified according to the lithological composition, climatic factors, 
and land use data in the groundwater recharge areas.  
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→ to identify and quantify the main factors controlling different chemical and isotope parameters in 
Slovenian groundwater and to interpret the role of each factor,  

 
Groundwater chemical and isotopic composition of Slovenian groundwaters is controlled by natural and/or 
anthropogenic factors. Regarding the natural factors the lithological composition and climatic factors play 
the major role, whereas the agricultural activities and urban land use dominate as anthropogenic factors.  
Based on the land use data it was possible to quantify the major anthropogenic sources in the 
groundwater. Observed parameters NO3

-, Na+, Cl-, K+, and SO4
2- are typical constituents of many 

fertilizers, where its excess usage on arable lands is commonly reflected in groundwater chemical (and 
isotopic) composition. Leakages from septic tanks or sewage system, as well as use of animal manure 
and slurry also affect groundwater quality. In urban areas the use of salt for deicing roads has proven to 
be important as well.  
 
→ to develop the optimal methodology for evaluation of natural background levels (NBLs) in groundwater 

for selected chemical parameters according to specific Slovenian hydrogeological conditions, 
 

Methodology which has been developed for evaluation of natural background levels (NBL) in groundwater 
for chemical parameters according to Slovenian hydrogeological conditions has proven to be very 
applicable. In order to determine the natural background level for groundwater chemical parameters, the 
shares of anthropogenic influences in the recharge areas of sampled groundwaters was estimated and 
were correlated with the concentrations of observed parameters. The share of anthropogenic influence up 
to 20 % in the recharge areas was estimated as the natural recharge area. The natural background levels 
(NBLs) in Slovenian groundwater were determined only for selected chemical parameters (NO3

-, Na+, Cl-, 
K+, and SO4

2-) because their anthropogenic sources overshadows the natural source (except for NO3
-). 

This methodology provides the possibility for the evaluation of natural background levels (NBLs) of recent 
groundwater because the majority of groundwater was sampled in natural recharge areas with less 
significant anthropogenic influence, which could not be excluded in some sampling locations. Additionally, 
groundwater chemical and isotopic analyses were performed in the same laboratories during 2009-2011, 
and the results are therefore not only mutually comparable, but they also provide the most recent 
groundwater status in Slovenian groundwater. In comparison to other methodologies for determination of 
natural background levels (NBL) in groundwater this method requires less groundwater samples, which 
saves time and money. 
 
→ to prepare various hydrochemical thematic maps of the main hydrochemical and isotope parameters 

for the whole Slovenian territory. Thematic maps display typical concentrations of studied 
hydrochemical parameters for individual sampling locations and whole groundwater bodies. 

 
Hydrochemical thematic maps are the first ones of this kind ever made for Slovenian groundwater. They 
provide the information on the typical groundwater concentrations of studied hydrochemical and isotopic 
parameters in observed sampling locations, as well as for groundwater bodies. These hydrochemical 
thematic maps could be used for various purposes: planning of utilization of water resources for drinking 
water and technological purposes, water resources protection planning, for assessment of water 
vulnerability and sustainable management with groundwater, and in households. Finally, these maps 
could help to efficiently manage groundwater water bodies in Slovenia, as part of Water Frame Directive 
(2000/60/EC) and its Daughter Groundwater Directive (2006/118/EC) which both comprise the 
determination of natural background levels, and provide the basic information on the hydrochemical 
situation in aquifers.  
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6. SUMMARY 
 
Groundwater is a globally important, valuable and renewable resource. Its chemical status significantly 
influences the use of groundwater for domestic uses, irrigation and agriculture, for livestock, in food-
processing industry, for technological and recreational purposes. Despite numerous routine chemical and 
isotopic analyses on water sources in Slovenia a comprehensive research on chemical or isotopic 
characteristics of groundwater has not been conducted so far. Additionally, no comprehensive researches 
on the identification of the dominant parameters and mechanisms affecting chemical and isotopic 
composition of groundwater in Slovenia, as well as any detailed interpretation of groundwater’s isotopic 
composition do exist. Additionally, hydrogeochemical map of Slovenia is still not available, and neither are 
the bases for determination of the reference state for the assessment of good chemical status of 
groundwater according to WFD (2000/60/EC) and Daughter Directive (2006/118/EC).  
 
In order to provide expert basis for future work regarding mentioned issues, groundwater in Slovenia has 
been systematically sampled during past few years. The main purposes of the thesis were to identify 
whether the Slovenian groundwater chemical and isotopic composition is controlled by natural factors like 
lithological composition of the aquifer recharge area and recharge area climatic conditions. Additionally 
the aim was to declare to what extend and in which manner the groundwater chemical and isotopic 
composition depend on the land use in the groundwater recharge areas. The optimal methodology for 
geochemical research of Slovenian groundwater was identified according to sampling network density, 
data processing, interpretation of results, and data presentation. For evaluation of groundwater natural 
background levels for selected chemical parameters according to specific Slovenian hydrogeological 
conditions, another methodology was developed as well. Additionally this study also provides the typical 
values of measured hydrochemical parameters in groundwater for observed sampling locations and 
groundwater bodies.   
 
The concept of sampling network was designed in such a way that groundwater was sampled in locations 
which recharge areas are in most representative lithological and lithostratigraphic units found in Slovenia. 
Additionally sampling locations were evenly distributed throughout Slovenian territory, and are located in 
aquifers with various porosity types. From each sampling location during the 3-year study (2009-2011) 
groundwater was sampled twice in order to get the typical groundwater values of observed parameters. 
Groundwater was sampled according to standard procedures for sampling where in the field the 
groundwater pH, T, and EC were measured, and groundwater was sampled for the following major ions: 
Ca2+, Mg2+, Na+, K+, HCO3

-, NO3
-, Cl-, SO4

2-, S and Si; major secondary ions: B, Ba, Fe, NH4+, P, Sr, and 
Zn; and trace constituents: Ag, Al, As, Au, Be, Bi, Br, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ge, Hf, 
Hg, Ho, In, La, Li, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, 
Th, Ti, Tl, Tm, U, V, W, Y, Yb, and Zr; stable isotopic composition of oxygen (18O/16O), hydrogen (2H/1H), 
carbon (13C/12C) and nitrogen (15N/14N); and tritium (3H). Groundwater samples were sent out to various 
laboratories for analyses.  
 
For each sampling location its representative recharge area was determined according to the aquifer 
porosity type from which groundwater was sampled considering the aquifer’s lithological and 
hydrogeological structure and its characteristics (openness, depth), the topology of terrain, active water 
protection areas, past tracer tests results, past hydro-contours, orographic watersheds and borders of 
groundwater bodies and aquifer systems. Based on determined recharge areas of sampling locations 
several spatial analyses were preceded: altitudes, air temperature, and amount of precipitation, distance 
from the sea, lithological and lithostratigraphic structure, and land use. These data was used for further 
comparison between groundwater chemical and isotopic composition.  
 
Statistical analyses of data suggest that correlations between measured groundwater parameters are 
hydrochemically meaningful and are describing groundwater chemistry: dissolution of carbonate and 
silicate minerals, ion exchange reactions, redox conditions, and anthropogenic input. 
 
According to 3H activity in precipitation sampled groundwater was categorised as modern, submodern and 
old groundwater, with prevailing modern groundwater in shallow Slovenian aquifers. Stable isotopic 
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composition of oxygen and deuterium provided the information on the mean altitude of recharge areas, 
and d-excess on the recent precipitation recharge from prevailing Atlantic and Mediterranean air masses. 
Based on the groundwater isotopic data as well as the geographic and climatic diversity of the study area, 
three different isotopic altitude effects zones were defined, following the precipitation intensity pattern: 
Alps and Coastal region (-0.25 ‰ δ18O/100 m), Štajerska and Dolenjska regions (-0.27 ‰ δ18O/100 m), 
and Bela krajina region (-0.33 ‰ δ18O/100 m). The groundwater isotope continental effect is around 
0.83‰ δ18O/100 km. The groundwater isotope temperature gradient was estimated, and is around 0.25 ‰ 
δ18O /°C.  
 
The dominant water types in Slovenian groundwater are of Ca2+-Mg2+-HCO3

- and Ca2+-HCO3
- water type, 

followed by Na+-Ca2+-Mg2+-HCO3
-, Ca2+-Mg2+-HCO3

--NO3
-, Ca2+-Na+-HCO3

-, Ca2+-HCO3
--SO4

2-, and Ca2+-
Mg2+-HCO3

--SO4
2-. Groundwater concentrations of Ca2+, Mg2+, and HCO3

- are of natural origin and depend 
on dissolution of carbonate rocks in relation with the altitude, air temperature, partial pressure of CO2 from 
the atmosphere and soil, amount of precipitation, and vegetation cover. Based on the Ca2+/Mg2+ molar 
ratios it was possible to determine the prevailing type of carbonate rock in the recharge areas (dolomite or 
limestone). Mostly dissolved carbonate minerals contribute to water hardness. Based on the groundwater 
HCO3

- concentrations in the recharge areas of carbonate rocks the initial soil CO2 partial pressures 
concentration was evaluated. The groundwater δ13C-DIC values provided additional information on 
groundwater processes where the share of contribution to DIC for atmospheric and soil CO2, and 
carbonate minerals, can be estimated. The source of Si in groundwater is almost exclusively and 
unequivocally a result of water-silicate rock interaction. Concentration of other major groundwater ions like 
Na+ and Cl- suggest the dominant origin from the NaCl used for deicing roads during winter, use of manure 
and slurry on the fields, fertilizers, and leakage from sewage systems or septic tanks. Natural sources are 
less pronounced but also important, like the influence from the sea by the precipitation or sea spray, and 
ion exchange in clay recharge areas for Na+, and silicate weathering. Estimated natural background levels 
for Na+ and Cl- concentration in Slovenian groundwater are 1.5 mg/L and 1.70 mg/L, respectively. Main 
groundwater NO3

- sources are of anthropogenic origin as nitrogen fertilizers (manure and slurry, and 
synthetic fertilizers), or a leakage of septic tanks or sewage systems. The natural background level for 
groundwater NO3

- concentration is 3.81 mg/L. The occurrence of NH4
+ in groundwater is perhaps due to 

excessive use of inorganic of organic fertilizers, or due to reduced access of oxygen into groundwater. 
Based on the groundwater δ15Ntot values it was possible to identify the naturally occurring nitrate in 
precipitation and soil organic matter, or from anthropogenic sources (synthetic and organic fertilizers, 
manure or slurry, leakage from sewage or septic tanks). Groundwater in deeper aquifers is enriched in 15N 
probably due to denitrification. Also important nutrient beside NO3

- is K+. Groundwater K+ concentration 
suggest the prevailing anthropogenic origin by the excessive use of fertilizers or influence of waste waters. 
The natural background level for groundwater K+ concentration is 0.35 mg/L. Sources of groundwater 
SO4

2- in Slovenian groundwater are mostly anthropogenic (use of fertilizers and in SO2 emissions), and to 
lesser extend natural (weathering of gypsum and sulphide minerals, proximity of sea side). Natural 
background level for SO4

2- concentration in Slovenian groundwater is SO4
2- 6.93 mg/L. Concentration of 

majority of trace elements analysed in groundwater were below LOD. The sources of groundwater Fe are 
due to type of material used for borehole casing, or due to limonite impregnation in carbonate rocks and 
rare brown limonite particles, or due to dissolution of Fe from rock in the geochemical reduction 
environment (deep aquifers). Reductive conditions are also identified by increased groundwater Mn (and 
As) concentrations in deeper aquifers, as well as in shallow groundwater possible due to presence of 
organic matter or leakage from anaerobic layers where soluble Mn2+ is present. The source of 
groundwater Cr is mostly of anthropogenic origin as a consequence of contamination Cr6+ in the past by 
the emissions of galvanization plants.  
 
The final results also provide the information on typical groundwater concentrations of observed chemical 
and isotopic parameters according to certain lithological and lithostratigraphic units in the recharge areas 
as well as natural background levels for selected chemical parameters. Additionally hydrochemical 
thematic maps from which the spatial distribution of observed parameters is evident.  
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POVZETEK  
 
Podzemna voda je izredno pomemben, cenjen in obnovljiv naravni vir. Kemijsko stanje podzemne vode 
bistveno vpliva na njeno uporabo, tako v gospodinjstvu, kmetijstvu in živilsko-predelovalni industriji, kot 
tudi za tehnološke in rekreacijske namene. Kljub temu, da je bilo na posameznih vodnih virih opravljenih 
veliko rutinskih kemijskih in izotopskih raziskav podzemne vode, v Sloveniji do sedaj še ne razpolagamo s 
celovitejšim pregledom analiz na celotnem območju Slovenije. Prav tako do sedaj še ni bila izdelana 
študija, v kateri bi bili podrobneje obravnavani parametri in procesi v podzemni vodi, ki vplivajo na njeno 
kemijsko in izotopsko sestavo. Za slovenske podzemne vode še niso bile izdelane tematske karte 
kemijske in izotopske sestave, prav tako še ne obstajajo osnove za določitev referenčnega stanja dobrega 
kemijskega stanja podzemne vode v skladu z vodno direktivo (2000/60/EC) in direktivo o varstvu 
podzemne vode pred onesnaževanjem in poslabšanjem (2006/118/EC).  
 
Glede na omenjeno problematiko sem v sklopu predstavljene študije v preteklih letih sistematično vzorčila 
podzemno vodo z namenom, da bi ugotovila kateri faktorji vplivajo na kemijsko in izotopsko sestavo 
podzemne vode v Sloveniji. Predpostavila sem, da med naravnimi dejavniki najbolj vplivajo litološka 
zgradba vodonosnika in klimatski pogoji v napajalnem zaledju vodonosnika. Prav tako me je zanimalo v 
kakšni meri vplivajo na kemijsko in izotopsko sestavo podzemne vode antropogeni faktorji z rabo tal. V ta 
namen sem uporabila optimalno metodologijo za geokemijsko raziskovanje podzemnih vod v Sloveniji 
glede na gostoto vzorčne mreže, obdelavo, interpretacijo in predstavitev rezultatov. Glede na posebne 
hidrokemijske pogoje, ki prevladujejo v Sloveniji, sem za oceno naravnih kemijskih ozadij za izbrane 
parametre v podzemni vodi izdelala dodatno metodologijo. V predstavljeni študiji prav tako podajam 
tipične vrednosti merjenih geokemijskih parametrov v podzemni vodi na posameznih opazovanih vzorčnih 
mestih in vodnih telesih.   
 
Mrežo vzorčnih mest sem izbrala tako, da so bila vzorčna mesta enakomerno razporejena po celotnem 
ozemlju Slovenije ter da so pokrivala tiste vodonosnike podzemne vode, ki so zgrajeni iz najpogosteje 
pojavljajočih se litoloških in litostratigrafskih enot v Sloveniji z različnimi tipi poroznosti. Na vsakem 
vzorčnem mestu sem med triletnim vzorčenjem (2009-2011) podzemno vodo vzorčila dvakrat v skladu s 
standardi SIST z namenom, da bi pridobila tipične vrednosti opazovanih parametrov v podzemni vodi. Na 
terenu sem izmerila fizikalno-kemijske parametre v podzemni vodi kot so pH, T in električna prevodnost 
(EC). Vzorce vode sem odvzela za sklop parametrov med katerimi so v laboratorijih vzorčili glavne ione 
(Ca2+, Mg2+, Na+, K+, HCO3

-, NO3
-, Cl-, SO4

2-, S in Si), drugotne glavne ione (B, Ba, Fe, NH4
+, P, Sr, in Zn), 

sledne prvine (Ag, Al, As, Au, Be, Bi, Br, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ge, Hf, Hg, Ho, In, 
La, Li, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, Ti, Tl, 
Tm, U, V, W, Y, Yb, in Zr) ter izotopsko sestavo stabilnih izotopov (δ18O, δ2H, δ13C-DIC in δ15Ntot) in 
radioaktivni izotop tritij (3H).  
 
Vsakemu vzorčnemu mestu sem določila napajalno zaledje glede na tip poroznosti vodonosnika, litološko 
sestavo, hidrogeološko strukturo in ostale karakteristike vodonosnika (odprtost, globina), morfologijo 
terena, aktivne vodovarstvene pasove, pretekle sledilne preizkuse, pretekle hidroizohipse, orografske 
razvodnice in meje z vodnimi telesi ter vodonosnimi sistemi. Na osnovi določenih zaledij sem izdelala 
prostorske analize za določitev srednje nadmorske višine, srednje temperature zraka, srednje količine 
padavin, oddaljenost vzorčnega mesta od morja, delež zastopanosti posameznih litoloških in 
litostratigrafskih enot ter delež posameznega tipa rabe tal. Rezultate prostorskih analiz sem uporabila za 
primerjavo s podatki kemijske in izotopske sestave podzemne vode, da bi ugotovila njihovo medsebojno 
odvisnost. 
 
Statistična analiza podatkov je pokazala, da obstajajo statistično značilne hidrokemijske povezave med 
opazovanimi parametri v podzemni vodi, ki so posledica nekaterih glavnih geokemijskih procesov v 
podzemni vodi: raztapljanje karbonatnih in silikatnih mineralov, ionska izmenjava, prisotnost redoks 
pogojev in vpliv antropogenih dejavnikov. 
 
Glede na koncentracijo 3H v padavinski in podzemni vodi sem podzemne vode razvrstila v razrede in sicer 
v mlade, srednje mlade in stare podzemne vode. Analizirana podzemne vode je večinoma mlada 
(recentna) voda, ki predstavlja podzemno vodo iz plitvih vodonosnikov. Na osnovi izotopske sestave kisika 
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in vodika v podzemni vodi sem pridobila informacijo o srednji nadmorski višini napajalnega zaledja in na 
podlagi devterijevega presežka informacijo o recentnem napajanju vodonosnikov s padavinsko vodo 
prevladujočih zračnih mas severnega Atlantika in območja Sredozemlja. Z izotopsko sestavo kisika in 
vodika v podzemni vodi in s podatki o geografski in klimatski raznolikosti slovenskega ozemlja sem 
določila 3 različne višinske izotopske efekte glede na intenziteto padavinskega vzorca (JZ-SV): Alpska in 
Primorska regija (-0,25 ‰ δ18O/100 m), Štajerska in Dolenjska regija (-0,27 ‰ δ18O/100 m) in Bela krajina 
(-0,33 ‰ δ18O/100 m). Celinski izotopski efekt v podzemni vodi je bil ocenjen na okoli -0,83 ‰ δ18O/100 
km in izotopski temperaturni gradient okoli 0,25 ‰ δ18O/°C.  
 
V Slovenskih podzemnih vodah prevladuje Ca2+-Mg2+-HCO3

- in Ca2+-HCO3
- tip vode, in v manjši meri Na+-

Ca2+-Mg2+-HCO3
-, Ca2+-Mg2+-HCO3

--NO3
-, Ca2+-Na+-HCO3

-, Ca2+-HCO3
--SO4

2- in Ca2+-Mg2+-HCO3
--SO4

2-  

tip vode. Koncentracije ionov Ca2+, Mg2+ in HCO3
- v podzemni vodi so naravnega izvora in so odvisne od 

raztapljanja karbonatnih kamnin in nadmorske višine, temperature zraka, parcialnega tlaka CO2 iz 
atmosfere in tal, količine padavin in vegetacijskega pokrova v napajalnem zaledju. Na podlagi molarnega 
razmerja med Ca2+ in Mg2+ v podzemni vodi sem ugotavljala prevladujoč tip karbonatnih kamnin v zaledju 
(dolomit ali apnenec). Prav tako sem na podlagi omenjenih ionov ugotavljala trdoto podzemne vode v 
Sloveniji. Ker na raztapljanje karbonatnih kamnin vpliva tudi parcialni tlak CO2 v tleh, sem le-tega 
izračunala na podlagi izmerjene koncentracije HCO3

- v podzemni vodi. Na osnovi izotopske sestave 
raztopljenega anorganskega ogljika (δ13C-DIC) sem lahko ocenila delež doprinosa posameznih virov 
ogljika v podzemno vodo. Poleg raztapljanja karbonatnih mineralov se v slovenskih vodah prav tako 
odraža raztapljanje silikatnih mineralov, saj je vir silicija (Si) v podzemni vodi naravnega izvora. Kot glavni 
vir natrija (Na+) in klora (Cl-) v podzemni vodi sem določila soljenje cest v zimskem obdobju, uporabo 
gnoja in gnojevke na poljih, uporabo gnojil ter iztok kanalizacije ali greznic. Naravni viri natrija in klora so 
se izkazali za manj izrazite, ampak prav tako pomembne, kot je npr. vpliv morja (padavine in aerosoli), 
ionska izmenjava pri natriju in preperevanje silikatnih mineralov. Ocenjena meja naravnega ozadja za Na+ 

je 1,5 mg/L in za Cl- 1,70 mg/L. Glavni viri nitrata (NO3
-) v podzemni vodi so antropogenega izvora v obliki 

dušikovih gnojil (gnoj in gnojevka ter sintetična gnojila) in iztok kanalizacije ali greznic. Ocenjena meja 
naravnega ozadja za NO3

- je 3,81 mg/L. Možen razlog za pojavljanje amonijevega iona (NH4
+) v podzemni 

vodi je prekomerna uporaba anorganskih in organskih gnojil ali omejen dostop kisika v podzemno vodo. S 
pomočjo izmerjenih vrednosti δ15Ntot v podzemni vodi sem lahko opredelila naravne (v zraku, v tleh) in 
antropogene (naravna in sintetična gnojila) vire. Poleg NO3

- je pomemben vir hranil tudi kalij (K+). Vir kalija 
v podzemni vodi je večinoma antropogen in je posledica prekomerne uporabe gnojil, pride pa tudi iz 
odpadnih voda. Ocenjena meja naravnega ozadja za K+ je 0,35 mg/L. Vir sulfata (SO4

2-) v podzemni vodi 
je prav tako antropogen in sicer zaradi uporabe gnojil in emisij SO2 iz zraka, ki so posledica izgorevanja 
fosilnih goriv. Drugotni naravni vir je preperevanje sadre in sulfidnih mineralov ter bližina morja (padavine 
in aerosoli). Ocenjena meja naravnega ozadja za SO4

2- je 6,93 mg/L. Koncentracije večine slednih prvin v 
podzemni vodi je pod mejo zaznavnosti (LOD). Vir železa (Fe) v podzemni vodi je lahko v materialu, ki se 
je uporabil za cevitev objekta, limonitna impregnacija v karbonatnih kamninah ali raztapljanje mineralov pri 
redukcijskih pogojih. Slednje sem prav tako identificirala s pomočjo povišane koncentracije mangana (Mn) 
in arzena (As) v podzemni vodi v globokih vodonosnikih. Vir kroma (Cr) v podzemni vodi je posledica 
onesnaženja s Cr6+ v preteklosti zaradi bližine kovinskopredelovalne dejavnosti.  
 
Končni rezultati raziskave tako podajajo informacijo o tipičnih koncentracijah opazovanih kemijskih in 
izotopskih parametrov v podzemni vodi glede na litološke in litostratigrafske enote v napajalnem zaledju 
ter naravno hidrokemijsko ozadje za izbrane kemijske parametre, katerih izvor je predvsem antropogen. 
Prav tako sem izdelala hidrokemijske tematske karte iz katerih je razvidna prostorska porazdelitev 
opazovanih parametrov.  
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Topographic map of Slovenia 
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Geological map of Slovenia 

(Buser, 2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure: Geology legend (1/3) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure: Geology legend (2/3) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure: Geology legend (3/3) 
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Soil map of Slovenia 

(TIS/ICPVO, 1999-2014) 

 

 

 

 

 

 

 

 

 

 
 
 
  



 
Figure: Legend of Pedocartographic units
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Mean annual precipitation in Slovenia (1971-2000) 
(Bat et al. 2008) 
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Hydrogeological map of Slovenia (IAH) 

(Prestor et al., 2004) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: IAH legend 
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Legend: CORINE Land Cover 

(Ministry of the Environment and Spatial planning, Environmental Agency of the Republic of Slovenia, 
Surveying and Mapping, Authority of the Republic of Slovenia, European Environment Agency, 2003). 



 

 

 

 

Figure: CORINE Land Cover legend 
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Legend: Actual agricultural and forest land usage 

(Ministry for Agriculture and the Environment, 2012) 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure: Actual agricultural and forest land usage 
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Sampling locations with determined recharge areas  
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Main keys for determination of groundwater recharge areas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table: Main keys for determination of groundwater recharge areas (1/3) 

Sampling location Source Reliability area 
(km2) Reference 

B-9, Brestovica water protection zones high 83.80 Urbanc et al., 2010 
Berglez topology high 0.29   
BLP-2, Nedelica hydro-contour lines medium 2.43   

Bohinjska 
Bistrica 

water protection zones, tracer test, 
topology  

medium 8.80 

Odlok o določitvi varstvenih pasov in ukrepov za 
zavarovanje vodnega zajetja Voje in zajetja 
Bistrica (Official  Gazette of the Republic of 
Slovenia  21/1994) 

Brekovice water protection zones (I.) high 0.03 
Odlok o spremembah in dopolnitvah odloka o 
varstvu virov pitne vode (Official  Gazette of the 
Republic of Slovenia 20/1991) 

Črna tracer tests, aquifer system border high 22.01   
Čemažarjev izvir topology, watersheds medium 0.05   

Čepovan-1/94 water protection zones high 3.51 

Odlok o določitvi varstvenih območij in ukrepov 
za zavarovanje območja črpališča in 
vodozbirnega območja kaptažne vrtine v Dolu pri 
Čepovanu (Official  Gazette of the Republic of 
Slovenia 19/1996) 

DAC-3,  Skopice conceptual model, hydro-contour 
lines 

medium 0.04 Prestor et al., 2006 

Debevčev mlin topology, tracer test high 1.03   
Dobličica topology, aquifer system border high 45.63   
Dobravca topology medium 0.88   
Dobrova topology medium 1.84   
C-4, Domžale water protection zones high 1.38   
Framski slap topology, watersheds high 0.51   
GI-1, Gornji Ig topology, watersheds medium 5.93   
Gljun article low 18.53 Komac, 2001 
Godec topology, watersheds medium 0.07   
Grad-1, Grad water protection zones   0.70 Matoz et al., 2002 
Gradišče hydro-contours lines, report medium 6.01 Report (Geo Vrtina) 

Grajsko zajetje water protection zones high 0.44 

Odlok o spremembi in dopolnitvi odloka o 
varstvenih pasovih vodnih virov v Ljubljani in 
ukrepih za zavarovanje voda (Official  Gazette of 
the Republic of Slovenia 15/1985) 

Grešnikov hrib topology high 0.04   
Hotešk topology, lithology, article high 46.54 border with neighbouring recharge area 

Hubelj topology, lithology, aquifer system 
border, article 

high 52.16 
border with neighbouring recharge area; Trček et 
al. 2003, 2006 

Ilirska Bistrica topology medium 19.22   
Iščica tracer tests, topology, watersheds high 23.78   
Jelševa Loka water protection zones high 2.41 Mencej and Kmetec, 1998 

Jurčičev izvir water protection zones high 0.53 
Odlok o varstvu lokalnih virov pitne vode  v 
Občini Medvode (Official  Gazette of the 
Republic of Slovenia 61/2001) 

Kamniška 
Bistrica topology high 22.12   

Korentan article high 6.34 Petrič and Šebela, 2004 
Krajcarica topology medium 0.87   

 
 

http://gis.arso.gov.si/related/gis_doc/VVO_ODLOKI/2102.pdf
http://gis.arso.gov.si/related/gis_doc/VVO_ODLOKI/2102.pdf
http://gis.arso.gov.si/related/gis_doc/VVO_ODLOKI/2102.pdf
http://gis.arso.gov.si/related/gis_doc/VVO_ODLOKI/2102.pdf


 

Table: Main keys for determination of groundwater recharge areas (2/3) 

Sampling location Source Reliability area 
(km2) Reference 

Krka topology, aquifer system border high 261.30   
Kropa topology   3.57   
Krupa tracer tests, aquifer system border high 85.69   
Lipnica topology low 21.26   
Lipnik topology, watersheds, tracer tests  medium 20.39   
LMV-1, Ljubljana report high 1.28 Herič, 2005 

Lucnica tracer test, topology, aquifer system 
border 

high 10.82   

V-3A, Lukavci water protection zones high 6.19 Petauer and Žlebnik, 1993 
Malenščica water protection zones high 22.81 Prestor et al., 2009 
Mali Obrh topology medium 9.99   
Maver topology medium 0.11   

Mazej water protection zones, topology high 0.86 

Odlok o varstvenih pasovih vodnih virov 
in termalnih vrelcev na območju občine 
Velenje (Official  Gazette of the Republik 
of Slovenia 3/84) 

Metliški Obrh tracer test, aquifer system border high 23.05   
Mitovšek topology medium 4.64   

Močilnik aquifer body, literature (considering 
only Slovenia) 

high 1054.00 Gospodarič and Habič, 1976 

Mošenik topology, lithology high 2.11   
Mrzlek topology, lithology, aquifer system high 155.50   
NG-4 hydrocontours, report medium 0.04 Drobne and Mencej, 1980 
Obrh Rinža topology, tracer test high 61.00   
Odolina topology high 3.68   
OV-29, Brunšvik conceptual model medium 3.60 Prestor et al., 2006 
Padiščak topology high 0.51   

Pasji rep topology, aquifer system border high 4.23 
topography, borders with aquifer 
systems 

Pevčevo topology high 0.08   

P-1, Pliskovica watershedes, topology S part, 
aquifer system, lithology 

medium 60.94   

Podroteja topology, aquifer system border high 51.05   

Potok pri dvorcu Visoko topology high 1.64 topography 

Pšata topology medium 5.67   

Radeščica tracer test, topology, aquifer system 
border 

high 194.50   

Rakitnica topology, tracer test high 65.65   
Rižana tracer test high 226.20   

Savica topology, aquifer system border low 30.28 
topography, borders with aquifer 
systems 

Ščetar water protection zones high 1.40 
Odlok o zaščiti vodnih virov na območju 
Občine Škocjan (Official  Gazette of the 
Republik of Slovenia 34/2000) 

Šempeter 0840 hydrocountours high 2.19 

Drobne, 1977; Odlok o varstvu virov 
pitne vode na območju Občine Laško 
(Official  Gazette of the Republik of 
Slovenia 38/1999); Uhan personal 
communication 

 



 

Table: Main keys for determination of groundwater recharge areas (3/3) 

Sampling location Source Reliability area 
(km2) Reference 

Sevšek topology, watershed medium 0.05   
V-6, Skorba hydro-contours high 5.97 Žlebnik, 1986 

Soča tracer tests, topology, aquifer system 
borders,  

high 6.45   

Strahinec topology, watersheds medium 0.07   
Šumec topology high 0.91   

Težka voda aquifer system border, topology, 
tracer test, watershed,  

high 34.40   

Tominčev izvir tracer tests, topology high 278.20   
Trate water protection zones high 0.05   

TR-1/99, Trebelno water protection zones high 0.18 

Odlok o varstvu virov pitne vode v Občini 
Trebnje in ukrepih za zavarovanje kakovosti in 
količini vode (Official  Gazette of the Republik of 
Slovenia 75/1996) 

Trebija water protection zones high 0.60 
Odlok o dopolnitvi odloka o varstvu virov pitne 
vode (Official  Gazette of the Republik of 
Slovenia 20/1994) 

Trgovina, Vurberk topology medium 0.01   
Velika Toplica topology, lithology high 3.87   
Veliki Vrh, Bloke water protection zones high 0.47 Mencej et al., 2002 
VG-10, Mala Goba water protection zones high 0.05 Hoetzl, 2012 
Vidovič topology medium 0.02   

Vipava aquifer system border, topology, 
water protection zones, lithology 

high 100.90 

Lapajne, 2000; border with neighbouring 
recharge area; Odlok o varstvenih pasovih 
vodnih virov "Podlipa" v Vipavi (Official Gazette 
of the Republik of Slovenia 14/1983)  

Vo-1, Vodice water protection zones, report high 0.45 Mencej and Kmetec, 1997; Mencej, 2000. 
VP-1, 
Prosenjakovci lithology of borehole medium 0.37   

Vt-1, Tinsko topology, water protection zones high 0.45 Kutnjak, 1986.  

Zadlaščica watersheds, aquifer system border, 
topology 

high 9.28   

Žegnani studenec topology, water protection zones high 0.12 
Odlok o varstvu virov pitne vode na območju 
Občine Mislinja (Official Gazette of the Republic 
of Slovenia 100/2000). 
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Listing of sampling locations in alphabetical order 
 

- orthophoto picture of recharge area of sampling locations (Environmental Agency of Slovenia, 
2013), 

 
- photos of sampling locations (personal archive), and 

 
- determined recharge areas of sampling locations according to:  

 
- Hydrogeological map (IAH) (Prestor et al., 2004), 
- Geological map (Buser, 2010), 
- CORINE Land Cover (CLC) (Ministry of the Environment and Spatial 

planning et al., 2003), and  
- Actual agricultural and forest land usage (Land use) (Ministry for 

Agriculture and the Environment, 2012). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Legends to figures are found in the Appendices 2, 5, 6 and 7. 



B-9, Brestovica 
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 Sampling location B-9, Brestovica (IAH classification)  Sampling location B-9, Brestovica (Geological classification) 

  
 Sampling location B-9, Brestovica (CLC classification)  Sampling location B-9, Brestovica (Land use classification) 
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 Sampling location Bohinjska Bistrica (IAH classification)  Sampling location Bohinjska Bistrica (Geological classification) 

  
 Sampling location Bohinjska Bistrica (CLC classification)  Sampling location Bohinjska Bistrica (Land use classification) 
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 Sampling location Gljun (IAH classification)  Sampling location Gljun (Geological classification) 
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 Sampling location Godec (IAH classification)  Sampling location Godec (Geological classification) 
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Grešnikov hrib 

  
 Sampling location Grešnikov hrib  Sampling location Grešnikov hrib 

 

 

 Sampling location Grešnikov hrib  



 

  
 Sampling location Grešnikov hrib (IAH classification)  Sampling location Grešnikov hrib (Geological classification) 

  
 Sampling location Grešnikov hrib (CLC classification)  Sampling location Grešnikov hrib (Land use classification) 



Hotešk 

  
 Sampling location Hotešk  Sampling location Hotešk 

 

 

 Sampling location Hotešk  
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LMV-1, Ljubljana 
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 Sampling location LMV-1, Ljubljana (IAH classification)  Sampling location LMV-1, Ljubljana (Geological classification) 
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P-1 ???? 
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OV-29, Brunšvik 
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 Sampling location OV-29, Brunšvik (IAH classification)  Sampling location OV-29, Brunšvik (Geological classification) 
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 Sampling location TR-1/99, Trebelno (IAH classification)  Sampling location TR-1/99, Trebelno (Geological classification) 
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 Sampling location V-3A, Lukavci (IAH classification)  Sampling location V-3A, Lukavci (Geological classification) 
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 Sampling location Veliki Vrh, Bloke (IAH classification)  Sampling location Veliki Vrh, Bloke (Geological classification) 
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 Sampling location VG-10, Mala Goba (IAH classification)  Sampling location VG-10, Mala Goba (Geological classification) 

  
 Sampling location VG-10, Mala Goba (CLC classification)  Sampling location VG-10, Mala Goba (Land use classification) 



Vidovič 

  
 Sampling location Vidovič  Sampling location Vidovič 

  
 Sampling location Vidovič  Sampling location Vidovič 



 

  
 Sampling location Vidovič (IAH classification)  Sampling location Vidovič (Geological classification) 

  
 Sampling location Vidovič (CLC classification)  Sampling location Vidovič (Land use classification) 



Vipava 

  
 Sampling location Vipava  Sampling location Vipava 

  
 Sampling location Vipava  Sampling location Vipava 



 

  
 Sampling location Vipava (IAH classification)  Sampling location Vipava (Geological classification) 

  
 Sampling location Vipava (CLC classification)  Sampling location Vipava (Land use classification) 



Vo-1, Vodice 

  
 Sampling location Vo-1, Vodice  Sampling location Vo-1, Vodice 

  
 Sampling location Vo-1, Vodice  Sampling location Vo-1, Vodice 



 

  
 Sampling location Vo-1, Vodice (IAH classification)  Sampling location Vo-1, Vodice (Geological classification) 

  
 Sampling location Vo-1, Vodice (CLC classification)  Sampling location Vo-1, Vodice (Land use classification) 



VP-1, Prosenjakovci 

  
 Sampling location VP-1, Prosenjakovci  Sampling location VP-1, Prosenjakovci 

 

 

 Sampling location VP-1, Prosenjakovci  



 

  
 Sampling location VP-1, Prosenjakovci (IAH classification)  Sampling location VP-1, Prosenjakovci (Geological classification) 

  
 Sampling location VP-1, Prosenjakovci (CLC classification)  Sampling location VP-1, Prosenjakovci (Land use classification) 



Vt-1, Tinsko 

 

  
 Sampling location Vt-1, Tinsko  Sampling location Vt-1, Tinsko 

  
 Sampling location Vt-1, Tinsko  Sampling location Vt-1, Tinsko 



 

  
 Sampling location Vt-1, Tinsko (IAH classification)  Sampling location Vt-1, Tinsko (Geological classification) 

  
 Sampling location Vt-1, Tinsko (CLC classification)  Sampling location Vt-1, Tinsko (Land use classification) 



Zadlaščica 

  
 Sampling location Zadlaščica  Sampling location Zadlaščica 

  
 Sampling location Zadlaščica  Sampling location Zadlaščica 



 

  
 Sampling location Zadlaščica (IAH classification)  Sampling location Zadlaščica (Geological classification) 

  
 Sampling location Zadlaščica (CLC classification)  Sampling location Zadlaščica (Land use classification) 



Žegnan studenec 

  
 Sampling location Žegnan studenec  Sampling location Žegnan studenec 

  
 Sampling location Žegnan studenec  Sampling location Žegnan studenec 



 

  
 Sampling location Žegnan studenec (IAH classification)  Sampling location Žegnan studenec (Geological classification) 

  
 Sampling location Žegnan studenec (CLC classification)  Sampling location Žegnan studenec (Land use classification) 
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Detailed information on sampling locations and groundwater 

chemical and isotopic composition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



sampling location X Y Z mean altitude (m) distance from 
the sea (km) object type groundwater body aquifer porosity type major rock type lithological unit lithostratigraphic unit T GIS (°C) 

(1971-2000) CORINE Land Cover classification Actual agricultural and forest land usage 
classification 

mean amount of 
precipitations (mm)

recharge 
area (km2)

n

X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S
B-9, Brestovica 5075107 5392110 22 247.072 33.977 borehole Obala in Kras z Brkini karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 12.2 broad-leaved forest forest 1565 83.8 2 15.0 0.1 7.45 0.03 450 1 -7.70 0.23 -48.4 1.0 13.2 0.9 -10.5 0.9 5.9 0.1 5.15 0.72 75 0 8.9 0.5 5.8 0.0 0.71 0.04 0.01 0.00 252 1 9.00 0.06 8.75 0.72 10.05 0.07 1.94 0.14 0.25 0.00 11.50 4.95 29.00 2.83 0.95 0.07 73.50 82.73 1.89 1.48 0.20 0.03 -0.25 0.03
Berglez 5135661 5485962 682 796.549 134.216 spring capture Kamniško-Savinjske Alpe fractured igneous and metamorphic rocks igneous rocks Oligocene igneous rocks 7.0 coniferous forest forest 1700 0.29 2 13.8 1.4 8.00 0.00 145 11 -8.90 0.02 -60.3 0.2 10.9 0.0 -13.3 0.5 5.61 0.33 24 2 2.7 0.3 4.8 0.4 0.50 0.00 0.01 0.00 82 11 1.52 0.05 3.61 0.28 10.28 0.60 5.21 0.39 0.25 0.00 5.50 0.71 4.75 3.18 0.25 0.00 5.00 0.00 0.48 0.13 -0.17 0.09 -1.00 0.19

BLP-2, Nedelica 5162986 5602609 167 170.207 244.489 borehole Murska kotlina intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 9.6  non-irrigated arable land areas of   intense use of nutrients and plant 

protection products 850 2.43 2 12.1 0.2 6.47 0.08 438 18 -9.04 0.17 -63.3 0.6 9.1 2.0 -18.0 0.0 9.6 2.3 9.00 0.43 56 1 14.0 0.0 8.1 0.4 1.35 0.07 0.01 0.00 101 6 26.70 2.26 72.38 4.07 38.85 0.92 9.70 1.20 0.25 0.00 4.75 3.18 38.00 0.00 0.25 0.00 17.50 17.68 1.71 1.31 -1.31 0.05 -2.95 0.11

Bohinjska Bistrica 5124083 5417338 614 1297.67 87.107 surface water Julijske Alpe v porečju Save karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 5.0 coniferous forest forest 2856 8.8 2 5.9 8.17 0.04 179 10 -9.34 0.73 -61.3 5.2 13.4 0.6 -4.2 1.4 -1.6 1.8 5.90 30 2 7.3 0.4 0.3 0.0 0.13 0.00 0.01 0.00 123 5 0.38 0.00 2.46 0.09 1.17 0.59 0.31 0.07 0.25 0.00 2.50 0.00 2.50 0.00 0.38 0.18 12.50 10.61 0.16 0.06 0.25 0.08 0.18 0.15

Brekovice 5098066 5432416 527 556.913 70.565 spring Cerkljansko, Škofjeloško in 
Polhograjsko hribovje

mixed  (karstic, fractured, 
intergranular) carbonate rocks carbonates with clastics Triassic carbonates 9.0 coniferous forest forest 1900 0.03 2 9.4 0.6 7.85 0.07 238 7 -8.93 0.08 -58.8 1.0 12.6 0.4 -13.5 0.5 5.32 0.77 48 1 3.1 0.4 1.7 0.1 0.69 0.08 0.01 0.00 166 5 1.66 0.00 4.09 0.66 4.26 0.33 2.96 0.12 0.25 0.00 2.50 0.00 11.00 5.66 0.25 0.00 5.00 0.00 0.13 0.07 0.26 0.07 -0.38 0.17

C-4, Domžale 5111465 5467594 304 313.52 104.23 pumping station Savska kotlina in Ljubljansko barje intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 9.0  non-irrigated arable land areas of   intense use of nutrients and plant 

protection products 1450 1.38 2 12.3 0.1 7.41 0.04 532 23 -8.26 0.41 -56.5 0.9 9.7 2.3 -14.6 3.4 10.7 5.0 5.29 1.22 86 3 20.0 0.0 3.7 0.4 1.05 0.07 0.01 0.00 315 12 9.27 0.42 23.47 1.38 8.86 0.38 3.87 0.07 0.25 0.00 18.00 1.41 20.00 1.41 3.70 0.42 13.00 11.31 0.03 0.00 0.28 0.01 0.22 0.03

Čemažarjev izvir 5122072 5441604 848 904.37 95.633 spring capture Cerkljansko, Škofjeloško in 
Polhograjsko hribovje fractured igneous and metamorphic rocks igneous rocks Ladinian igneous rocks 7.0 land principally occupied by agriculture, with 

significant areas of natural vegetation
areas of less intense use of nutrients and 

plant protection products 1900 0.11 2 9.9 0.3 7.75 0.07 170 13 -9.45 0.03 -62.5 0.1 13.2 0.3 -14.0 0.1 5.70 1.10 31 1 1.7 0.9 2.7 0.1 0.46 0.13 0.01 0.00 105 1 4.04 0.32 4.96 0.13 5.00 0.04 4.94 0.35 0.25 0.00 2.50 0.00 7.25 6.72 0.38 0.18 5.00 0.00 0.22 0.11 -0.20 0.07 -1.42 0.39

Čepovan-1/94 5102664 5407570 697 861.757 63.786 pumping station Goriška Brda in Trnovsko-Banjška 
planota fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 9.0 broad-leaved forest forest 2300 3.51 2 17.7 0.7 7.80 0.14 380 8 -8.25 0.02 -52.6 0.5 13.4 0.7 -12.6 0.8 3.94 0.94 49 3 26.5 0.7 2.6 0.1 0.46 0.04 0.01 0.00 277 16 6.10 0.37 3.96 0.03 5.10 0.91 0.73 0.19 0.25 0.00 2.50 0.00 7.25 6.72 0.80 0.00 23.50 26.16 0.25 0.09 0.40 0.18 0.82 0.33

Črna 5140583 5472327 744 1320.75 128.654 spring Kamniško-Savinjske Alpe fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 4.5 broad-leaved forest forest 2077 22.01 2 7.0 0.3 7.87 0.06 249 8 -9.82 0.07 -66.6 0.4 12.1 0.2 -9.2 0.1 1.6 1.6 5.61 0.45 40 1 11.0 0.0 0.3 0.0 0.13 0.00 0.01 0.00 169 3 0.38 0.00 2.37 0.22 4.09 0.37 0.59 0.05 0.25 0.00 2.50 0.00 3.75 1.77 0.25 0.00 5.00 0.00 0.17 0.11 0.21 0.04 0.14 0.10

DAC-3,  Skopice 5085100 5541050 155 155.047 156.697 borehole Krška kotlina intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 11.0 complex cultivation patterns areas of   intense use of nutrients and plant 

protection products 1250 0.04 2 14.1 0.6 7.37 0.00 674 1 -8.90 0.29 -61.5 2.4 9.7 0.1 -12.8 0.7 12.1 9.3 8.02 0.15 97 1 25.0 0.0 9.9 1.6 1.90 0.14 0.01 0.00 355 4 23.10 0.14 23.62 2.10 10.85 0.35 4.77 0.62 0.25 0.00 12.50 0.71 20.00 4.24 0.65 0.21 5.00 0.00 0.27 0.11 0.33 0.00 0.36 0.01

Debevčev mlin 5123206 5472078 416 716.964 115.605 spring Kamniško-Savinjske Alpe karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 7.6 mixed forest forest 1700 1.03 2 9.8 0.2 7.45 0.10 369 14 -8.80 0.00 -57.9 0.1 12.5 0.1 -13.8 0.8 3.4 1.4 5.32 0.14 81 4 3.9 0.1 1.2 0.1 0.29 0.02 0.01 0.00 243 9 2.10 0.08 6.09 0.16 7.44 0.49 1.19 0.08 0.25 0.00 2.50 0.00 7.50 0.71 0.48 0.32 5.00 0.00 0.15 0.00 0.22 0.06 -0.59 0.14

DEV-1, Desenci 5150900 5569790 240 240 210.122 pumping station Zahodne Slovenske Gorice intergranular clastic sedimentary rocks gravel, sand and clay Pliocene clastics 2 15.2 0.6 7.27 0.16 577 19 -10.39 0.16 -71.0 1.4 12.1 0.1 -13.2 0.2 8.4 1.3 1.12 0.19 73 1 32.0 0.0 5.1 0.0 0.74 0.04 0.01 0.00 371 4 2.81 0.12 2.59 0.03 1.96 0.03 9.95 1.24 0.85 0.07 2.50 0.00 13.00 1.41 0.25 0.00 65.00 7.07 11.08 0.50 0.14 0.15 0.21 0.31

Dobličica 5045259 5511586 147 553.373 121.013 pumping station Dolenjski kras karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 8.8 broad-leaved forest forest 1489 45.63 2 11.1 0.1 7.65 0.01 381 33 -10.46 0.95 -72.4 8.0 11.3 0.4 -14.7 0.7 5.3 0.8 8.22 0.99 81 15 7.4 0.1 1.1 0.1 0.13 0.00 0.01 0.00 285 59 1.23 0.27 1.86 1.06 4.35 0.10 1.45 0.17 0.25 0.00 2.50 0.00 7.50 2.12 0.43 0.25 8.50 4.95 0.10 0.01 0.47 0.14 0.20 0.21

Dobravca 5136639 5433382 466 505.802 104.6 spring Savska kotlina in Ljubljansko barje intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 7.0 complex cultivation patterns areas of less intense use of nutrients and 

plant protection products 1714 0.88 2 10.6 0.2 7.49 0.04 515 19 -8.60 0.16 -58.4 1.1 10.4 0.3 -13.2 0.2 7.6 1.6 5.71 0.23 89 1 22.5 0.7 4.4 0.1 0.52 0.01 0.01 0.00 346 4 7.48 0.44 12.11 0.66 8.95 0.39 3.51 0.05 0.25 0.00 26.50 3.54 12.50 3.54 0.25 0.00 5.00 0.00 0.21 0.06 0.42 0.05 0.52 0.11

Dobrova 5100633 5535519 372 689.128 156.622 surface water Posavsko hribovje do osrednje Sotle karstic and fractured carbonate rocks limestone prevailing Miocene Lithothamnium limestone 8.9 land principally occupied by agriculture, with 
significant areas of natural vegetation forest 1320 1.84 2 10.3 0.2 7.77 0.05 459 16 -10.31 0.02 -69.4 0.4 13.1 0.1 -12.7 0.4 6.0 3.1 6.23 1.35 70 3 18.0 1.4 1.5 0.1 0.71 0.06 0.01 0.00 279 5 2.70 0.30 6.33 0.38 10.40 0.42 1.98 0.23 0.25 0.00 4.75 3.18 9.50 0.71 0.25 0.00 5.00 0.00 0.14 0.09 0.52 0.06 0.73 0.07

Framski slap 5150824 5542540 993 1098.99 187.361 spring capture Vzhodne Alpe fractured igneous and metamorphic rocks metamorphic rocks old Paleozoic rocks 7.0 mixed forest forest 1550 0.51 2 7.2 0.3 6.70 0.07 38 2 -10.65 0.01 -71.1 0.0 14.1 0.1 -20.2 0.5 0.2 0.6 6.54 0.21 2 0 1.0 0.0 2.4 0.1 0.51 0.02 0.01 0.00 25 2 0.38 0.00 2.26 0.00 2.13 0.02 8.94 0.00 0.25 0.00 2.50 0.00 11.50 0.71 1.10 0.14 5.00 0.00 0.10 0.10 -2.98 0.04 -5.97 0.09

GI-1, Gornji Ig 5086419 5461014 640 806.566 83.665 pumping station Kraška Ljubljanica fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 7.2 mixed forest forest 1734 5.93 2 11.2 0.3 7.66 0.04 436 3 -9.69 0.01 -65.0 0.4 12.5 0.4 -12.9 0.3 9.6 2.1 6.89 1.07 54 0 31.5 0.7 2.0 0.3 1.50 0.14 0.01 0.00 354 23 5.07 0.35 10.69 0.41 1.82 0.18 1.26 0.01 0.25 0.00 2.50 0.00 11.00 0.00 0.58 0.46 9.00 5.66 0.41 0.31 0.39 0.07 0.84 0.14
Gljun 5133418 5385668 436 1541.46 92.39 surface water Julijske Alpe v porečju Soče karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 4.1  bare rocks forest 3286 18.53 2 5.9 0.3 8.04 0.11 168 16 -9.44 1.21 -61.7 10.7 13.8 1.1 -2.6 0.3 -1.5 1.1 6.39 0.63 28 3 3.7 0.0 0.2 0.1 0.08 0.06 0.01 0.00 111 2 0.25 0.18 1.17 0.09 0.77 0.02 0.20 0.04 0.25 0.00 2.50 0.00 3.75 1.77 0.25 0.00 5.00 0.00 0.14 0.04 0.08 0.08 -0.44 0.20
Godec 5144027 5489835 942 987.301 142.902 spring capture Kamniško-Savinjske Alpe fractured igneous and metamorphic rocks igneous rocks Oligocene igneous rocks 6.1 coniferous forest forest 1550 0.07 2 14.6 1.4 7.80 0.42 65 1 -9.76 0.22 -64.1 0.4 14.0 1.4 -19.0 0.4 5.82 0.04 9 0 1.0 0.0 2.4 0.1 0.73 0.01 0.01 0.00 38 1 0.38 0.00 1.11 0.00 5.88 0.10 7.80 0.26 0.25 0.00 2.50 0.00 5.25 3.89 0.25 0.00 5.00 0.00 0.23 0.18 -1.09 0.44 -2.84 0.88
Grad-1, Grad 5184942 5583431 271 301.579 240.495 pumping station Goričko intergranular clastic sedimentary rocks gravel, sand and clay Pliocene clastics 9.0 mixed forest forest 895 0.7 2 12.4 0.3 6.99 0.03 335 25 -9.87 0.30 -69.6 1.3 9.4 1.1 -15.1 2.7 7.2 1.10 0.48 40 0 17.0 0.0 6.1 0.0 0.99 0.01 0.01 0.00 206 2 4.93 0.08 1.17 0.09 3.51 0.06 12.82 0.88 0.25 0.00 3.75 1.77 18.50 2.12 1.35 0.07 62.00 28.28 18.82 4.66 -0.59 0.03 -1.27 0.06

Gradišče 5167493 5585013 193 196.389 231.788 pumping station Murska kotlina intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 9.0  non-irrigated arable land areas of   intense use of nutrients and plant 

protection products 874 6.01 2 13.7 0.9 6.63 0.01 449 21 -8.80 0.13 -60.2 1.7 10.2 0.6 -16.0 0.1 13.9 0.1 8.76 1.59 57 4 11.5 0.7 23.0 1.4 9.55 0.64 0.01 0.00 175 14 34.70 2.83 25.19 2.95 39.55 3.61 8.52 0.08 0.25 0.00 77.50 3.54 42.50 0.71 0.43 0.25 5.00 0.00 0.45 0.25 -0.91 0.04 -2.23 0.08

Grajsko zajetje 5102756 5446784 411 558.675 83.365 spring capture Cerkljansko, Škofjeloško in 
Polhograjsko hribovje fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 9.0 broad-leaved forest forest 1700 0.44 2 10.9 0.7 7.68 0.04 457 2 -8.89 0.08 -59.5 0.4 11.6 0.3 -13.3 0.2 6.7 8.3 5.52 1.93 57 0 33.5 0.7 0.7 0.1 0.13 0.00 0.01 0.00 345 33 1.30 0.10 3.87 0.09 9.61 0.56 0.77 0.00 0.25 0.00 2.50 0.00 8.50 0.71 0.48 0.32 5.00 0.00 0.04 0.02 0.42 0.07 0.89 0.14

Grešnikov hrib 5099163 5473153 392 462.161 100.833 spring Posavsko hribovje do osrednje Sotle fractured clastic sedimentary rocks shale and sandstone Carboniferous-Permian beds 9.0 mixed forest forest 1350 0.04 2 10.2 5.2 7.78 0.21 116 12 -8.87 0.11 -59.3 0.1 11.6 0.7 -9.8 0.1 6.6 2.5 6.47 0.96 16 1 2.2 0.1 2.0 0.1 0.39 0.08 0.01 0.00 53 10 1.03 0.05 0.72 0.55 11.80 1.84 5.00 0.65 0.38 0.18 2.50 0.00 14.50 3.54 0.25 0.00 5.00 0.00 0.84 0.08 -0.72 0.32 -2.02 0.63

Hotešk 5110130 5406520 206 826.344 70.761 surface water Goriška Brda in Trnovsko-Banjška 
planota karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 8.1 broad-leaved forest forest 2373 46.54 2 9.6 0.4 8.16 0.04 269 18 -8.46 0.77 -53.1 3.4 14.6 2.8 -10.2 0.9 4.8 5.82 1.28 48 4 4.4 0.5 0.9 0.1 0.16 0.05 0.01 0.00 159 13 1.50 0.23 4.50 0.59 3.35 0.14 1.07 0.03 0.25 0.00 2.50 0.00 5.25 3.89 0.60 0.00 16.50 16.26 0.22 0.07 0.54 0.10 0.32 0.11

Hubelj 5085023 5416044 229 1006.48 50.697 spring Goriška Brda in Trnovsko-Banjška 
planota karstic and fractured carbonate rocks limestone prevailing Jurassic carbonates 6.9 broad-leaved forest forest 2483 52.16 2 8.5 0.4 8.02 0.04 244 0 -8.78 0.30 -52.6 2.9 17.7 5.3 -7.7 0.0 1.7 2.1 6.52 1.36 39 1 6.6 1.1 0.9 0.0 0.15 0.04 0.01 0.00 140 0 1.68 0.04 5.34 0.47 3.27 0.12 0.55 0.04 0.25 0.00 2.50 0.00 6.25 5.30 0.25 0.00 11.00 8.49 0.09 0.01 0.27 0.05 0.06 0.02

Ilirska Bistrica 5047352 5442029 424 777.595 51.771 spring capture Obala in Kras z Brkini karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 7.7 natural grasslands forest 1954 19.22 2 9.7 0.2 7.66 0.19 351 20 -8.05 0.04 -49.9 0.8 14.5 0.6 -11.5 1.0 0.2 0.3 3.39 1.67 61 3 8.8 0.3 1.3 0.0 0.13 0.00 0.01 0.00 234 23 2.35 0.01 3.76 0.19 3.96 0.29 1.09 0.07 0.25 0.00 2.50 0.00 10.50 3.54 0.25 0.00 21.50 23.33 0.38 0.26 0.30 0.21 0.04 0.42
Iščica 5090599 5463736 293 685.777 88.267 spring Savska kotlina in Ljubljansko barje fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 7.7 mixed forest forest 1640 23.78 2 9.8 0.2 7.69 0.00 402 6 -9.43 0.35 -63.6 3.1 11.8 0.3 -12.8 0.5 4.7 1.5 6.09 0.23 61 5 23.5 0.7 1.6 0.1 0.62 0.03 0.01 0.00 341 58 2.97 0.28 5.84 0.38 5.10 0.70 1.17 0.04 0.25 0.00 5.50 0.71 8.00 0.00 0.53 0.39 5.00 0.00 0.15 0.12 0.46 0.03 0.79 0.11
Jelševa Loka 5136200 5522000 432 778.582 162.144 spring capture Spodnji del Savinje do Sotle fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 7.4 mixed forest forest 1352 2.41 2 9.1 0.1 7.60 0.09 423 13 -9.81 0.06 -65.7 0.1 12.9 0.5 -12.2 0.4 2.2 0.8 6.33 0.40 62 1 18.0 1.4 0.7 0.0 0.44 0.00 0.01 0.00 259 8 1.14 0.03 5.67 0.44 8.20 0.50 1.50 0.14 0.25 0.00 2.50 0.00 8.50 0.71 0.38 0.18 18.00 18.38 0.36 0.09 0.27 0.09 0.30 0.23

Jurčičev izvir 5111220 5454048 318 340.165 94.465 spring Savska kotlina in Ljubljansko barje intergranular porosity clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 9.0 complex cultivation patterns areas of   intense use of nutrients and plant 

protection products 1550 0.53 2 10.9 0.1 7.30 0.00 605 32 -8.56 0.48 -57.8 0.4 10.7 3.4 -12.9 0.7 6.4 0.8 5.60 0.90 101 4 22.0 0.0 6.4 0.1 0.71 0.06 0.01 0.00 356 8 13.10 0.99 21.47 0.75 13.75 0.21 3.04 0.09 0.38 0.18 14.50 0.71 18.50 2.12 0.75 0.07 12.50 10.61 0.25 0.08 0.28 0.02 0.19 0.03

Kamniška Bistrica 5131580 5468815 592 1534.13 119.502 spring Kamniško-Savinjske Alpe karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 3.7  bare rocks forest 2208 22.12 2 5.7 0.1 8.02 0.12 171 5 -10.11 0.47 -67.0 2.7 13.9 1.1 -3.1 1.2 -1.0 0.1 6.65 0.92 27 0 4.1 0.6 0.2 0.1 0.08 0.06 0.01 0.00 122 23 0.25 0.18 1.28 0.25 1.46 0.28 0.22 0.02 0.25 0.00 2.50 0.00 2.50 0.00 0.25 0.00 5.00 0.00 0.17 0.01 0.07 0.04 -0.39 0.15
Korentan 5068310 5433092 537 644.7 50.39 spring Kraška Ljubljanica karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 9.0 broad-leaved forest forest 1900 6.34 2 9.0 0.1 7.45 0.07 320 21 -8.09 0.05 -49.9 1.3 14.8 1.7 -14.1 0.5 5.50 0.96 72 6 1.0 0.0 2.1 0.1 0.71 0.19 0.01 0.00 224 5 2.71 0.42 5.18 0.88 4.69 0.44 1.22 0.24 0.25 0.00 2.50 0.00 8.50 3.54 0.38 0.18 14.00 1.41 0.52 0.23 0.15 0.03 -1.27 0.09
Krajcarica 5138489 5405965 706 1202.98 98.522 spring Julijske Alpe v porečju Soče karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 5.2 mixed forest forest 2537 0.87 2 5.4 0.3 8.07 0.04 168 14 -10.33 0.88 -67.7 4.0 15.0 3.0 -6.6 5.0 -1.1 0.6 7.05 1.69 26 0 4.8 1.3 0.2 0.1 0.08 0.06 0.01 0.00 122 18 0.25 0.18 1.33 0.31 1.71 0.41 0.27 0.06 0.25 0.00 2.50 0.00 2.50 0.00 0.25 0.00 5.00 0.00 0.15 0.03 0.11 0.03 -0.25 0.07
Krka 5082860 5482630 272 493.167 100.996 spring Dolenjski kras karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 8.6 mixed forest forest 1466 261.3 2 10.4 0.2 7.75 0.19 454 39 -9.20 0.25 -62.3 2.1 11.4 0.1 -13.2 1.0 7.5 0.9 6.27 0.97 63 4 20.0 1.4 4.2 0.6 0.88 0.31 0.01 0.00 310 81 7.02 0.34 6.29 1.32 7.03 0.91 1.81 0.08 0.25 0.00 8.00 4.24 12.00 2.83 0.25 0.00 5.00 0.00 0.39 0.09 0.49 0.31 0.76 0.63
Kropa 5127330 5488035 408 958.487 130.048 spring Kamniško-Savinjske Alpe karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 6.7 mixed forest forest 1660 3.57 2 8.1 0.0 7.52 0.28 317 2 -9.68 0.16 -62.5 0.4 15.0 1.6 -11.9 1.3 0.1 0.6 6.22 0.02 55 3 6.7 1.1 0.5 0.0 0.16 0.05 0.01 0.00 201 24 0.76 0.04 4.40 0.47 3.90 0.20 0.77 0.02 0.25 0.00 2.50 0.00 6.50 0.71 0.43 0.25 15.50 14.85 0.60 0.75 0.07 0.35 -0.50 0.61
Krupa 5054543 5517284 139 369.141 127.336 spring Dolenjski kras karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 9.6 broad-leaved forest forest 1347 85.69 2 12.7 0.8 7.67 0.22 414 52 -9.62 0.11 -64.6 1.8 12.4 0.8 -14.4 0.7 10.8 6.1 7.21 0.11 73 6 9.9 3.0 2.0 0.2 0.49 0.06 0.01 0.00 265 59 3.28 0.18 4.69 1.00 5.62 0.24 1.93 0.29 0.25 0.00 4.25 2.47 10.00 1.41 0.70 0.00 5.00 0.00 0.52 0.04 0.42 0.33 0.24 0.77
Lipnica 5131112 5435693 494 1100.68 100.603 spring Julijske alpe v porečju Save karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 5.2 coniferous forest forest 2278 21.26 2 7.2 0.1 7.98 0.04 276 3 -8.85 0.15 -57.8 0.8 13.0 0.4 -10.5 0.6 -0.7 0.6 6.23 0.24 47 1 6.4 0.2 0.5 0.1 0.12 0.01 0.01 0.00 196 37 0.41 0.05 2.37 0.16 2.69 0.52 1.03 0.18 0.25 0.00 2.50 0.00 6.00 0.00 0.38 0.18 12.50 10.61 0.43 0.28 0.44 0.13 0.30 0.23
Lipnik 5138328 5425514 648 1244.87 103.214 spring Julijske Alpe v porečju Save fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 4.8 coniferous forest forest 2302 20.39 2 6.8 0.0 7.77 0.01 275 2 -9.38 0.18 -63.1 1.3 12.0 0.1 -11.0 0.8 3.7 3.0 6.28 0.69 54 4 4.5 0.3 1.9 0.4 0.20 0.11 0.01 0.00 207 30 3.91 1.05 1.79 0.97 3.07 0.40 1.60 0.15 0.25 0.00 2.50 0.00 6.50 0.71 0.58 0.46 5.00 0.00 0.22 0.00 0.31 0.02 -0.16 0.09

LMV-1, Ljubljana 5103755 5461973 305 306.885 94.883 pumping station Savska kotlina in Ljubljansko barje intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 9.0 industrial or commercial units urban areas 1450 1.28 2 13.5 0.4 7.45 0.03 581 35 -8.59 0.33 -60.4 0.6 8.3 3.3 -12.7 1.3 8.3 1.1 6.58 0.51 88 9 22.5 0.7 9.5 9.2 0.96 0.62 0.01 0.00 313 33 22.20 14.14 24.42 0.53 24.10 0.85 2.84 0.06 0.48 0.32 23.00 19.80 28.00 4.24 35.30 9.48 10.50 7.78 2.73 3.29 0.32 0.11 0.33 0.16

Lučnica 5129977 5477111 595 1306.41 123.956 spring Kamniško-Savinjske Alpe fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 5.1 mixed forest forest 1881 10.82 2 7.6 0.2 7.97 0.01 248 1 -9.39 0.43 -62.0 2.6 13.1 0.8 -9.8 0.5 3.7 4.7 5.44 0.53 42 1 9.4 0.8 0.3 0.0 0.20 0.10 0.01 0.00 170 1 0.38 0.00 2.92 0.44 3.33 0.57 0.66 0.01 0.25 0.00 2.50 0.00 6.00 1.41 0.25 0.00 5.00 0.00 0.29 0.25 0.33 0.00 0.30 0.04
Malenščica 5075629 5442509 450 645.879 62.254 spring Kraška Ljubljanica karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 8.6 mixed forest forest 1962 22.81 2 10.2 3.3 7.73 0.01 371 8 -8.86 0.19 -58.6 1.9 12.3 0.4 -12.4 0.7 4.1 2.8 5.71 0.18 65 2 8.0 1.0 1.6 0.1 0.23 0.15 0.01 0.00 224 1 2.65 0.19 3.81 0.75 4.39 0.59 0.93 0.31 0.25 0.00 2.50 0.00 9.00 1.41 0.25 0.00 5.00 0.00 0.28 0.08 0.37 0.02 0.12 0.03
Mali Obrh 5059874 5458907 605 898.215 70.809 spring Kraška Ljubljanica karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 6.7 mixed forest forest 2014 9.99 2 8.0 0.1 7.49 0.06 396 31 -9.16 0.66 -61.9 6.7 11.4 1.4 -14.5 0.6 2.4 1.9 5.30 0.28 83 8 6.7 1.0 0.7 0.0 0.13 0.00 0.01 0.00 277 33 1.00 0.08 2.74 0.44 3.70 0.02 0.96 0.06 0.25 0.00 2.50 0.00 7.50 0.71 0.43 0.25 26.00 29.70 0.11 0.01 0.32 0.02 -0.17 0.06

Maver 5132462 5505693 386 425.588 146.865 spring capture Spodnji del Savinje do Sotle intergranular clastic sedimentary rocks clay Oligocene clay "sivica" 9.0 complex cultivation patterns areas of less intense use of nutrients and 
plant protection products 1350 0.11 2 12.3 4.5 7.85 0.07 317 18 -9.72 0.59 -63.3 0.7 14.4 5.4 -14.9 1.3 4.79 0.91 37 1 5.8 0.1 32.0 5.7 1.04 0.37 0.01 0.00 168 12 7.31 0.21 11.18 1.16 27.50 2.83 10.81 0.91 0.38 0.18 31.50 3.54 16.50 3.54 0.25 0.00 10.50 7.78 0.21 0.13 0.13 0.10 -0.26 0.19

Mazej 5141306 5500227 552 733.237 148.477 spring capture Spodnji del Savinje do Sotle mixed  (karstic, fractured, 
intergranular) carbonate rocks carbonates with clastics Triassic carbonates 7.0 mixed forest forest 1376 0.86 2 11.2 0.0 7.67 0.01 296 19 -9.46 0.00 -65.4 1.2 10.4 1.2 -9.2 0.3 2.5 0.5 7.98 2.28 48 2 11.5 0.7 2.0 0.1 0.54 0.03 0.01 0.00 217 54 0.99 0.01 3.17 0.03 12.60 0.00 4.24 0.15 0.25 0.00 2.50 0.00 4.25 2.47 0.25 0.00 5.00 0.00 0.13 0.08 0.17 0.11 0.00 0.23

Metliški Obrh 5056517 5525151 152 314.589 135.38 spring Dolenjski kras karstic and fractured carbonate rocks limestone prevailing Jurassic carbonates 9.6 complex cultivation patterns forest 1277 23.05 2 11.0 0.4 7.40 0.01 399 3 -9.60 0.45 -66.0 4.1 10.8 0.4 -14.4 0.3 4.8 0.0 7.27 0.67 88 6 3.4 0.2 2.5 0.2 1.20 0.00 0.01 0.00 283 38 3.73 0.43 6.84 0.47 6.06 0.18 3.16 0.14 0.25 0.00 8.00 1.41 8.50 0.71 0.65 0.21 5.00 0.00 0.18 0.01 0.26 0.09 -0.60 0.18
Mitovšek 5108462 5502707 270 808.377 130.717 spring capture Posavsko hribovje do osrednje Sotle karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 7.8 mixed forest forest 1406 4.64 2 9.2 0.3 7.79 0.04 366 8 -10.01 0.21 -66.0 0.3 14.1 1.3 -12.6 0.8 3.6 3.1 5.45 0.68 61 1 10.1 1.3 1.0 0.0 0.18 0.08 0.01 0.00 259 66 1.83 0.08 5.07 0.09 9.65 0.64 1.08 0.11 0.25 0.00 2.50 0.00 8.00 0.00 0.75 0.21 32.00 38.18 0.21 0.11 0.46 0.13 0.42 0.33
Močilnik 5090215 5445514 295 701.869 73.612 spring Kraška Ljubljanica karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 7.9 coniferous forest forest 1941 1054 2 9.5 0.5 7.67 0.08 356 21 -8.62 0.51 -56.4 4.2 12.6 0.1 -13.0 1.0 3.3 0.5 5.98 0.43 59 6 8.7 1.9 2.8 0.1 0.46 0.04 0.01 0.00 212 8 4.17 0.09 5.85 0.38 5.03 0.89 1.06 0.24 0.25 0.00 5.25 3.89 10.00 2.83 0.55 0.07 19.00 1.41 0.29 0.06 0.25 0.14 -0.04 0.14
Mošenik 5142016 5444274 841 1265.46 114.222 spring Karavanke karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 4.3  bare rocks forest 2178 2.11 2 8.4 0.2 7.97 0.00 268 19 -10.34 0.13 -69.2 0.6 13.5 0.4 -4.5 0.4 1.3 0.8 6.41 1.67 40 1 11.5 0.7 1.5 0.1 0.24 0.16 0.01 0.00 146 12 1.34 0.24 2.35 0.06 30.45 7.42 1.27 0.03 0.25 0.00 4.25 2.47 4.75 3.18 0.43 0.25 5.00 0.00 0.16 0.12 0.23 0.04 0.20 0.10

Mrzlek 5095431 5395038 77 824.729 54.45 spring capture Goriška Brda in Trnovsko-Banjška 
planota karstic and fractured carbonate rocks limestone prevailing Jurassic carbonates 8.6 broad-leaved forest forest 2300 155.5 2 10.1 1.1 7.86 0.05 210 60 -8.27 0.23 -54.5 3.9 11.7 2.1 -10.7 1.1 -0.8 0.7 5.19 0.73 48 4 4.2 0.4 1.1 0.1 0.13 0.00 0.01 0.00 166 11 1.50 0.16 3.54 0.44 3.59 0.16 0.80 0.03 0.25 0.00 2.50 0.00 7.00 0.00 0.43 0.25 5.00 0.00 0.39 0.45 0.27 0.06 -0.24 0.03

NG-4 5084377 5391735 42 51.9448 43.219 borehole Goriška Brda in Trnovsko-Banjška 
planota intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 

coarse-grained) 13.0  non-irrigated arable land areas of less intense use of nutrients and 
plant protection products 1550 0.04 2 15.7 0.8 7.35 0.07 468 10 -7.12 0.06 -44.7 0.9 12.3 0.4 -11.6 0.6 4.38 0.16 91 1 12.0 0.0 4.9 0.4 1.45 0.35 0.01 0.00 307 10 6.15 0.21 18.19 2.32 13.60 0.42 2.68 0.11 0.25 0.00 24.50 0.71 14.50 4.95 1.55 0.07 55.00 36.77 0.58 0.35 0.25 0.05 -0.10 0.11

Obrh Rinža 5057946 5486583 468 708.937 97.395 pumping station Dolenjski kras karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 7.5 mixed forest forest 1717 61 2 9.0 0.8 7.56 0.11 361 37 -10.07 1.61 -68.2 13.8 12.4 0.9 -13.5 0.7 0.3 1.3 7.49 2.15 77 9 4.2 0.6 0.7 0.1 0.13 0.00 0.01 0.00 262 8 0.89 0.16 2.95 0.34 3.38 0.21 0.97 0.08 0.25 0.00 2.50 0.00 8.00 1.41 0.48 0.32 5.00 0.00 0.11 0.06 0.34 0.05 -0.29 0.10
Odolina 5050062 5423852 505 674.563 34.371 surface water Obala in Kras z Brkini fractured clastic sedimentary rocks flysch rocks Eocene flysch rocks 9.0 broad-leaved forest forest 1700 3.68 2 12.6 4.1 7.81 0.06 326 12 -8.01 0.18 -49.9 0.9 14.2 0.6 -11.6 0.5 2.3 0.3 5.63 1.26 54 1 5.3 0.2 5.3 0.0 0.75 0.04 0.01 0.00 212 42 3.56 0.21 1.17 0.09 10.65 0.64 4.47 0.71 0.25 0.00 5.75 4.60 10.50 2.12 0.25 0.00 5.00 0.00 8.14 5.76 0.36 0.15 -0.01 0.30

OV-29, Brunšvik 5143720 5556721 248 252.862 195.185 private well Dravska kotlina intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 11.0  non-irrigated arable land areas of   intense use of nutrients and plant 

protection products 1150 3.6 2 13.7 1.9 7.14 0.01 861 30 -9.38 0.40 -64.5 3.5 10.5 0.3 -12.2 1.9 7.7 0.1 7.23 0.80 120 3 23.5 0.7 23.5 0.7 10.95 1.48 0.01 0.00 372 1 29.00 2.55 91.23 1.88 28.85 2.76 6.85 1.05 0.25 0.00 140.50 10.61 31.50 0.71 0.70 0.14 5.00 0.00 0.38 0.20 0.18 0.01 -0.06 0.01

P-1, Pliskovica 5069843 5405820 202 316.743 32.436 borehole Obala in Kras z Brkini karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 11.0 broad-leaved forest forest 1535 60.94 2 14.8 2.3 7.35 0.07 496 1 -6.96 0.11 -44.5 0.7 11.2 0.2 -12.4 0.3 7.13 1.75 81 1 26.5 0.7 1.5 0.1 0.13 0.00 0.01 0.00 375 13 2.17 0.05 1.11 0.00 7.04 0.06 2.19 0.14 0.25 0.00 2.50 0.00 9.00 4.24 0.50 0.00 35.00 32.53 1.00 0.49 0.27 0.05 0.35 0.12
Padiščak 5039609 5397011 88 147.768 6.537 spring capture Obala in Kras z Brkini fractured clastic sedimentary rocks flysch rocks Eocene flysch rocks 13.0 mixed forest forest 1138 0.51 2 13.7 0.3 7.50 0.29 717 3 -6.91 0.59 -40.9 0.4 14.4 5.1 -12.7 0.9 9.3 0.9 5.71 0.86 145 0 10.4 2.3 15.5 0.7 4.30 0.42 0.01 0.00 426 54 26.05 0.35 22.81 3.82 47.60 1.84 6.94 0.19 0.25 0.00 76.50 2.12 60.00 9.90 0.48 0.32 5.00 0.00 0.38 0.38 0.68 0.33 0.49 0.77

Pasji rep 5071540 5420149 227 425.213 42.34 surface water Goriška Brda in Trnovsko-Banjška 
planota fractured clastic sedimentary rocks flysch rocks Eocene flysch rocks 10.3 broad-leaved forest forest 1700 4.23 3 15.2 3.8 8.11 0.14 392 30 -7.17 0.06 -45.2 2.6 12.2 3.1 -10.9 0.8 5.0 0.1 5.16 0.51 72 2 6.2 0.3 5.9 0.6 1.33 0.06 0.01 0.00 244 29 3.76 0.44 4.34 0.70 16.93 1.53 4.07 0.24 0.25 0.00 15.50 4.95 5.75 4.60 0.38 0.18 5.00 0.00 1.40 0.29 0.81 0.09 0.85 0.18

Pevčevo 5147489 5536505 1054 1080.66 180.499 spring Vzhodne Alpe fractured igneous and metamorphic rocks igneous rocks Oligocene igneous rocks 7.0 coniferous forest forest 1550 0.08 2 7.3 0.5 6.80 0.57 29 1 -10.74 0.15 -73.1 0.1 12.8 1.1 -20.3 0.5 7.23 0.36 2 0 1.0 0.0 2.4 0.0 0.51 0.06 0.01 0.00 21 3 0.38 0.00 3.19 0.19 3.06 0.01 6.26 0.35 0.25 0.00 2.50 0.00 5.75 4.60 0.25 0.00 5.00 0.00 0.26 0.08 -2.96 0.62 -5.93 1.24

Podroteja 5094010 5425185 330 785.505 63.122 spring Goriška Brda in Trnovsko-Banjška 
planota fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 8.2 mixed forest forest 2300 51.05 2 8.8 0.1 7.85 0.09 325 6 -8.86 0.07 -57.0 0.1 14.0 0.6 -10.9 0.0 2.4 2.5 5.88 1.27 42 1 15.5 0.7 1.3 0.0 0.17 0.07 0.01 0.00 191 2 2.24 0.21 6.05 0.53 3.81 0.18 0.62 0.02 0.25 0.00 2.50 0.00 7.50 3.54 0.50 0.00 13.50 0.71 0.13 0.05 0.24 0.08 0.34 0.18

Potok pri dvorcu Visoko 5109667 5439003 384 636.793 83.873 surface water Cerkljansko, Škofjeloško in 
Polhograjsko hribovje fractured clastic sedimentary rocks shale and sandstone Carboniferous-Permian beds 8.2 mixed forest forest 1802 1.64 3 12.2 4.7 7.72 0.09 82 12 -8.75 0.13 -56.7 0.4 13.3 1.4 -7.8 0.5 6.2 3.7 5.11 0.26 7 1 3.2 0.4 2.9 0.2 0.59 0.05 0.01 0.00 35 3 2.17 0.21 3.01 0.85 7.02 0.65 3.94 0.44 0.25 0.00 5.25 3.89 12.00 1.41 0.25 0.00 5.00 0.00 0.86 0.25 -1.29 0.16 -2.64 0.32

Pšata 5124201 5462272 407 805.037 109.636 spring Kamniško-Savinjske Alpe karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 7.1 mixed forest forest 1697 5.67 2 10.5 0.3 7.60 0.06 370 14 -8.74 0.01 -60.0 1.3 9.9 1.4 -13.6 0.7 6.7 2.5 6.71 1.08 69 3 9.5 0.1 4.1 0.7 0.49 0.06 0.01 0.00 289 22 8.10 1.44 4.52 0.06 4.79 0.01 1.73 0.12 0.25 0.00 5.50 0.71 8.50 0.71 1.00 0.57 5.00 0.00 0.19 0.06 0.37 0.08 0.16 0.16
Radeščica 5066427 5503442 176 678.37 115.604 spring Dolenjski kras karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 8.0 mixed forest forest 1630 194.5 2 9.8 0.5 7.41 0.05 398 30 -10.18 0.73 -70.2 7.4 11.2 1.6 -14.1 0.6 10.6 8.9 6.47 1.04 82 7 7.3 2.5 1.9 0.4 0.44 0.01 0.01 0.00 273 33 2.66 0.52 4.74 0.94 5.52 0.02 1.26 0.10 0.25 0.00 3.75 1.77 9.00 1.41 0.48 0.32 5.00 0.00 0.10 0.03 0.23 0.03 -0.33 0.18
Rakitnica 5061215 5480413 486 867.883 92.019 pumping station Dolenjski kras karstic and fractured carbonate rocks limestone prevailing Jurassic carbonates 6.9 mixed forest forest 1842 65.65 2 8.9 0.6 7.90 0.01 329 31 -9.75 0.56 -65.1 6.2 12.9 1.8 -12.3 0.8 1.5 1.5 5.50 1.10 56 7 8.4 0.4 0.9 0.1 0.16 0.05 0.01 0.00 218 50 1.60 0.30 4.67 0.41 3.86 0.45 0.68 0.02 0.25 0.00 2.50 0.00 8.50 2.12 0.25 0.00 5.00 0.00 0.11 0.04 0.46 0.14 0.39 0.20
Rižana 5043199 5413318 74 555.765 22.751 spring capture Obala in Kras z Brkini karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 9.9 broad-leaved forest forest 1606 226.2 2 11.3 0.2 7.62 0.20 404 23 -7.89 0.34 -50.4 3.8 12.7 1.1 -13.5 0.6 2.6 3.1 4.81 0.95 75 3 5.7 0.2 2.5 0.1 0.39 0.01 0.01 0.00 290 78 3.56 0.11 3.59 0.56 6.07 0.27 1.85 0.17 0.25 0.00 5.25 3.89 11.50 3.54 0.85 0.07 37.50 28.99 0.55 0.35 0.42 0.32 0.01 0.63
Savica 5128056 5408071 648 1784.8 88.61 surface water Julijske Alpe v porečju Save karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 2.6 bare rocks forest 3477 30.28 2 6.5 1.1 7.97 0.01 170 18 -9.61 0.89 -61.8 7.3 15.1 0.1 -3.2 1.2 -0.6 6.16 0.27 29 2 3.4 0.8 0.2 0.0 0.08 0.06 0.01 0.00 91 26 0.25 0.18 1.22 0.16 1.22 0.44 0.26 0.05 0.25 0.00 2.50 0.00 2.50 0.00 0.25 0.00 8.50 4.95 0.33 0.19 -0.08 0.13 -0.80 0.34

Sevšek 5099488 5506749 801 825.396 129.932 spring capture Posavsko hribovje do osrednje Sotle fractured clastic sedimentary rocks shale and sandstone Permian Val Gardena layers 7.0 broad-leaved forest areas of less intense use of nutrients and 
plant protection products 1350 0.05 2 13.6 0.6 7.50 0.28 195 36 -9.82 0.09 -65.6 0.7 12.9 0.0 -16.5 1.2 6.52 0.70 26 5 10.8 1.8 2.7 0.4 0.23 0.15 0.01 0.00 130 22 1.50 0.40 2.15 1.47 6.35 0.02 5.12 0.36 0.25 0.00 6.00 0.00 10.00 2.83 0.25 0.00 5.00 0.00 0.53 0.09 -0.45 0.43 -1.00 0.84

Soča 5141410 5402362 890 1749.31 100.941 surface water Julijske Alpe v porečju Soče karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 2.5 moors and heathland forest 2813 6.45 2 10.4 8.09 0.06 156 5 -10.50 0.86 -71.3 5.2 12.7 1.7 -1.0 0.4 -0.3 2.7 5.87 0.51 26 1 4.7 0.5 0.3 0.0 0.13 0.00 0.01 0.00 117 15 0.38 0.00 1.11 0.00 1.24 0.69 0.24 0.03 0.25 0.00 2.50 0.00 2.50 0.00 0.25 0.00 5.00 0.00 0.07 0.07 0.11 0.02 -0.24 0.07

Strahinec 5162919 5554140 283 295.531 203.881 private well Zahodne Slovenske Gorice intergranular clastic sedimentary rocks gravel, sand and clay Miocene clastics 9.0 complex cultivation patterns areas of less intense use of nutrients and 
plant protection products 1050 0.07 2 16.2 0.7 7.00 0.00 849 24 -9.07 0.08 -61.3 0.9 11.3 1.6 -12.7 0.5 6.62 0.13 144 4 41.0 1.4 14.5 3.5 1.90 0.42 0.01 0.00 555 29 9.07 3.15 5.29 2.35 64.70 3.82 4.53 0.32 0.25 0.00 107.50 7.78 25.00 2.83 0.48 0.32 49.50 62.93 0.60 0.24 0.27 0.03 0.28 0.06

Ščetar 5087015 5523032 186 265.888 140.109 spring capture Dolenjski kras fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 9.8 complex cultivation patterns forest 1250 1.4 2 13.1 0.8 7.46 0.22 588 6 -9.59 0.08 -65.4 0.4 11.3 1.1 -13.3 0.3 6.2 0.7 3.73 0.27 76 0 36.0 0.0 1.2 0.0 0.36 0.12 0.01 0.00 406 32 2.13 0.01 5.25 0.16 3.03 0.04 3.37 0.50 0.25 0.00 2.50 0.00 10.50 0.71 0.70 0.00 7.50 3.54 0.11 0.07 0.38 0.25 0.72 0.49

Šempeter 0840 5123490 5510688 267 275.096 145.572 private well Savinjska kotlina intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 9.9 land principally occupied by agriculture, with 

significant areas of natural vegetation
areas of   intense use of nutrients and plant 

protection products 1250 2.19 2 14.1 0.2 7.77 0.76 751 14 -8.32 0.05 -56.9 0.0 9.6 0.4 -12.7 0.5 6.4 0.1 8.08 1.24 113 4 25.0 1.4 7.3 0.2 1.05 0.07 0.01 0.00 363 13 15.80 2.26 74.18 9.71 15.50 0.00 4.82 0.48 0.38 0.18 28.00 2.83 28.00 5.66 0.65 0.21 28.50 33.23 0.52 0.33 0.77 0.73 1.17 1.46

Šumec 5152600 5487320 667 900.678 147.528 spring capture Karavanke karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 6.4 mixed forest forest 1450 0.91 2 6.6 0.0 7.96 0.13 232 0 -11.41 0.03 -77.9 1.0 13.4 0.8 -5.9 0.9 2.8 1.0 9.62 0.39 31 1 10.5 0.7 0.2 0.0 0.12 0.00 0.01 0.00 152 21 0.42 0.06 2.41 0.03 3.22 0.21 0.66 0.10 0.25 0.00 2.50 0.00 2.50 0.00 0.25 0.00 5.00 0.00 0.16 0.10 0.14 0.07 0.10 0.12
Težka voda 5069089 5516618 199 475.928 129.037 spring capture Dolenjski kras karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 9.1 broad-leaved forest forest 1397 34.4 2 8.8 0.6 7.69 0.06 357 6 -10.22 0.25 -70.1 1.6 11.7 0.4 -13.7 0.2 1.8 0.8 7.61 0.11 73 3 8.4 1.2 1.1 0.2 0.33 0.04 0.01 0.00 255 21 1.71 0.18 4.29 0.25 4.87 0.18 2.20 0.06 0.25 0.00 2.50 0.00 7.50 0.71 0.70 0.28 5.00 0.00 0.07 0.02 0.44 0.10 0.21 0.25
Tominčev izvir 5072369 5498020 173 527.375 111.823 spring Dolenjski kras karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 8.6 broad-leaved forest forest 1524 278.2 2 9.5 0.3 7.71 0.11 364 50 -9.74 0.76 -65.3 6.3 12.7 0.2 -13.3 0.9 2.5 0.8 6.35 0.90 62 8 8.7 1.2 1.7 0.1 0.26 0.04 0.01 0.00 228 52 2.85 0.13 4.58 0.66 4.57 0.77 1.05 0.04 0.25 0.00 3.75 1.77 8.50 2.12 0.25 0.00 7.50 3.54 0.21 0.14 0.34 0.25 0.10 0.50

TR-1/99, Trebelno 5086095 5512055 510 426.995 129.455 pumping station Dolenjski kras mixed  (karstic, fractured, 
intergranular) carbonate rocks carbonates with clastics Triassic carbonates 9.0 broad-leaved forest forest 1250 0.18 2 11.5 0.7 7.45 0.07 516 4 -9.83 0.09 -67.1 0.7 11.5 0.0 -12.6 0.9 9.14 1.41 73 1 33.5 0.7 2.2 0.1 0.60 0.02 0.01 0.00 384 1 4.23 0.09 7.26 0.38 5.90 0.13 3.45 0.24 0.69 0.12 2.50 0.00 10.00 5.66 0.25 0.00 30.50 36.06 0.28 0.06 0.33 0.07 0.62 0.15

Trate 5110690 5526255 621 680.235 152.434 spring capture Spodnji del Savinje do Sotle karstic and fractured carbonate rocks limestone prevailing Miocene   Lithothamnium limestone 9.0 broad-leaved forest forest 1350 0.05 2 11.0 0.8 7.60 0.00 406 11 -9.95 0.29 -65.2 0.1 14.4 2.2 -12.2 0.6 6.39 0.25 77 1 13.0 1.4 2.7 0.4 0.13 0.00 0.01 0.00 275 11 1.42 0.08 1.84 1.03 17.50 0.85 3.84 0.04 0.25 0.00 2.50 0.00 5.25 3.89 0.25 0.00 15.00 5.66 0.11 0.04 0.39 0.01 0.29 0.07

Trebija 5106590 5430333 458 657.371 76.527 spring Cerkljansko, Škofjeloško in 
Polhograjsko hribovje fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 8.5 broad-leaved forest forest 1900 0.6 2 10.2 0.6 7.63 0.13 367 1 -8.97 0.03 -58.3 0.4 13.5 0.2 -12.2 1.0 3.3 6.04 0.60 43 1 22.5 0.7 0.9 0.0 0.29 0.04 0.01 0.00 227 2 1.46 0.13 3.96 0.34 4.18 0.06 1.08 0.11 0.25 0.00 2.50 0.00 7.50 0.71 0.38 0.18 25.00 19.80 0.22 0.15 0.10 0.14 0.20 0.29

Trgovina, Vurberk 5149847 5562200 379 405.448 203.098 spring capture Zahodne Slovenske Gorice intergranular clastic sedimentary rocks gravel, sand and clay Pliocene clastics 9.0 mixed forest forest 1150 0.01 2 12.1 1.8 7.32 0.18 592 14 -10.32 0.09 -69.3 3.0 13.2 2.3 -13.2 0.3 1.6 1.5 10.88 1.25 96 1 22.5 0.7 1.9 0.0 0.51 0.12 0.01 0.00 352 4 2.56 0.10 6.37 0.13 29.45 0.35 4.90 0.41 0.25 0.00 2.50 0.00 19.50 0.71 0.60 0.00 5.00 0.00 0.19 0.01 0.28 0.16 0.21 0.35

V-3A, Lukavci 5156385 5587413 185 186.468 228.025 pumping station Vzhodne Slovenske Gorice intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 11.0 broad-leaved forest forest 950 6.19 2 13.0 0.4 6.80 0.14 254 3 -9.31 0.21 -64.3 0.3 10.2 2.0 -17.5 0.3 4.33 0.09 29 1 12.0 0.0 12.0 0.0 0.42 0.05 0.01 0.00 138 4 11.20 0.28 15.54 0.63 4.01 0.13 10.47 0.49 0.25 0.00 8.00 1.41 23.00 7.07 0.25 0.00 32.00 4.24 0.36 0.07 -1.09 0.14 -2.26 0.29

V-6, Skorba 5141951 5563379 236 237.962 199.992 pumping station Dravska kotlina intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 9.9 coniferous forest forest 1150 5.97 2 11.3 0.1 7.44 0.00 583 7 -9.23 0.04 -62.9 0.6 11.0 0.9 -12.7 0.3 6.2 0.8 6.35 0.22 102 1 22.0 0.0 5.5 0.1 0.84 0.01 0.01 0.00 351 45 11.50 0.71 45.32 1.67 24.95 0.35 5.72 0.12 0.25 0.00 16.00 0.00 22.00 2.83 0.70 0.28 5.00 0.00 0.17 0.12 0.41 0.05 0.44 0.10

Velika Toplica 5128352 5545029 284 445.749 177.304 pumping station Haloze in Dravinjske Gorice fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 9.0 mixed forest forest 1273 3.87 2 11.9 1.1 7.42 0.02 556 44 -10.20 0.21 -68.5 2.8 13.1 1.2 -13.0 0.1 5.1 4.2 6.23 1.04 71 1 32.0 2.8 0.9 0.1 0.23 0.14 0.01 0.00 344 19 1.57 0.08 6.24 0.06 15.30 1.70 1.58 0.37 0.25 0.00 2.50 0.00 9.50 0.71 0.25 0.00 38.50 47.38 0.23 0.02 0.25 0.01 0.43 0.04

Veliki Vrh, Bloke 5069312 5463391 723 793.203 78.045 spring capture Kraška Ljubljanica fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 7.0 complex cultivation patterns areas of less intense use of nutrients and 
plant protection products 1700 0.47 2 11.6 0.1 7.55 0.07 460 39 -10.11 0.01 -67.6 1.1 12.9 0.6 -13.5 0.3 5.02 0.09 61 4 31.5 2.1 2.9 2.0 1.86 2.46 0.01 0.00 340 1 5.29 3.51 6.68 3.38 4.88 0.74 0.90 0.22 0.25 0.00 4.75 3.18 7.00 2.83 0.25 0.00 33.00 39.60 0.43 0.37 0.31 0.09 0.63 0.18

VG-10, Mala Goba 5099600 5498990 697 715.022 123.098 pumping station Posavsko hribovje do osrednje Sotle fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 9.0 land principally occupied by agriculture, with 
significant areas of natural vegetation

areas of less intense use of nutrients and 
plant protection products 1350 0.05 2 9.1 0.3 7.67 0.00 395 10 -9.46 0.11 -64.2 0.4 11.5 1.3 -13.2 0.2 8.1 0.2 6.50 1.36 52 1 25.5 0.7 1.6 0.1 2.85 0.35 0.01 0.00 314 11 2.57 0.21 5.71 0.50 10.05 0.64 1.48 0.04 0.25 0.00 5.50 0.71 9.00 1.41 0.53 0.39 5.00 0.00 0.64 0.12 0.34 0.02 0.66 0.05

Vidovič 5134270 5574281 267 276.849 205.924 private well Haloze in Dravinjske Gorice intergranular clastic sedimentary rocks gravel, sand and clay Miocene clastics 11.0 land principally occupied by agriculture, with 
significant areas of natural vegetation

areas of less intense use of nutrients and 
plant protection products 1150 0.02 2 15.7 2.1 6.95 0.07 683 126 -8.89 0.13 -60.7 0.0 10.4 1.1 -14.3 0.6 6.62 1.61 135 24 17.5 6.4 6.2 2.5 1.15 0.07 0.03 0.03 391 105 13.35 8.85 44.98 25.92 38.85 15.63 6.98 0.08 0.25 0.00 24.50 0.71 21.00 5.66 0.25 0.00 39.50 48.79 3.52 2.40 0.06 0.24 -0.48 0.57

Vipava 5078341 5419948 103 824.073 47.376 spring Goriška Brda in Trnovsko-Banjška 
planota karstic and fractured carbonate rocks limestone prevailing Cretaceous carbonates 7.9 mixed forest forest 2276 100.9 2 10.7 1.1 7.83 0.00 308 6 -8.60 0.28 -53.8 1.7 15.0 0.6 -11.5 0.1 1.5 2.4 5.70 1.02 57 0 2.9 0.1 1.4 0.1 0.20 0.11 0.01 0.00 180 5 2.08 0.18 6.07 1.38 4.32 0.06 0.90 0.07 0.25 0.00 2.50 0.00 8.00 4.24 0.38 0.18 5.00 0.00 0.15 0.03 0.34 0.01 -0.32 0.04

Vo-1, Vodice 5116163 5462656 338 339.377 103.979 pumping station Savska kotlina in Ljubljansko barje intergranular clastic sedimentary rocks gravel and sand Quaternary  clastics (medium- and 
coarse-grained) 9.0 complex cultivation patterns areas of   intense use of nutrients and plant 

protection products 1450 0.45 2 12.0 0.9 7.64 0.00 419 23 -8.35 0.25 -56.9 1.4 9.9 0.6 -13.1 0.7 7.0 6.62 1.03 77 4 13.0 1.4 4.4 0.1 0.39 0.03 0.01 0.00 316 50 12.95 0.64 27.38 0.97 7.93 0.06 4.12 0.01 0.25 0.00 10.50 0.71 19.00 0.00 0.78 0.74 5.00 0.00 0.17 0.01 0.47 0.08 0.46 0.19

VP-1, Prosenjakovci 5178104 5600285 261 272.765 250.376 pumping station Goričko intergranular clastic sedimentary rocks gravel, sand and clay Pliocene clastics 9.0 mixed forest forest 850 0.37 2 12.2 0.8 6.84 188 -10.05 0.06 -69.9 0.7 10.5 0.3 -18.7 6.1 0.48 20 9.8 6.5 0.89 0.01 123 1.28 1.11 1.58 12.05 1.24 0.25 0.00 2.50 0.00 16.50 0.71 1.05 0.07 27.75 38.54 0.65 0.54 -1.22 -2.46
Vt-1, Tinsko 5113876 5541943 271 463.508 167.857 pumping station Spodnji del Savinje do Sotle fractured and karstic carbonate rocks dolomite prevailing Triassic carbonates 9.0 mixed forest forest 1250 0.45 2 10.8 0.5 7.58 0.06 498 13 -9.39 0.04 -64.0 0.9 11.2 0.6 -13.8 0.0 1.6 0.2 9.27 0.67 65 1 36.0 0.0 0.8 0.0 0.44 0.04 0.01 0.00 429 60 1.41 0.01 6.80 0.10 21.70 0.28 2.17 0.01 0.25 0.00 2.50 0.00 8.50 0.71 0.58 0.46 5.00 0.00 0.41 0.16 0.45 0.11 0.93 0.22
Zadlaščica 5121573 5406218 813 1510.77 81.881 spring capture Julijske Alpe v porečju Soče karstic and fractured carbonate rocks limestone prevailing Triassic carbonates 4.2 broad-leaved forest forest 3474 9.28 2 5.6 0.1 8.16 0.09 208 49 -9.34 0.52 -60.8 4.4 14.0 0.2 -3.1 1.0 -1.0 1.4 4.99 0.12 27 2 6.5 0.4 0.3 0.0 0.13 0.00 0.01 0.00 116 4 0.38 0.00 2.26 0.00 1.19 0.62 0.33 0.06 0.25 0.00 2.50 0.00 3.75 1.77 0.38 0.18 5.00 0.00 0.06 0.05 0.18 0.11 0.03 0.20
Žegnani studenec 5148505 5518250 1403 1466.25 166.759 spring capture Vzhodne Alpe fractured igneous and metamorphic rocks metamorphic rocks old Paleozoic rocks 5.0 coniferous forest forest 1620 0.12 2 5.7 0.0 7.52 0.09 136 10 -10.89 0.01 -71.1 1.7 16.0 1.6 -16.3 0.8 -0.6 6.76 0.66 21 2 1.0 0.0 2.8 0.1 0.52 0.01 0.01 0.00 90 8 0.38 0.00 3.43 0.34 5.58 0.34 7.05 1.09 0.75 0.35 2.50 0.00 8.50 0.71 0.25 0.00 5.00 0.00 0.09 0.00 -0.65 0.10 -2.34 0.15

Si (mg/L) SIdolMg2+ (mg/L) SIcalSO4
2- (mg/L) As (µg/L) B (µg/L) Br (µg/L) Cr (µg/L) Fe (µg/L) Mn (µg/L)NO3

- (mg/L)d-excess  (‰)T (°C) pH EC (µS/cm) δ 18O (‰) δ 2H (‰) Na+ (mg/L) K+ (mg/L) NH4+ (mg/L) HCO3
- (mg/L) Cl- (mg/L)δ 13C-DIC (‰) δ 15Ntot (‰) 3H (TU) Ca2+ (mg/L)
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Summary of statistical data analyses 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n – number of observations; X – mean; XG – geometric mean; Md – median; Min – minimum; Max – 
maximum; S – standard deviation; SX – standard error of mean; VAR – variance; CV – coefficient of 
variation; A – skewness; E – kurtosis; Dis. – distribution; N – Normal; Log – Log-normal; KS – 
Kolmogorov-Smirnov test; W – Shapiro-Wilk’s test; χ2 – Chi-Square test. 



 

Table: Descriptive statistics of raw data 
 

Parameter n X XG Md Min Max VAR=S2 S A E 

T 174 10.7 10.3 10.6 5.2 18.2 8.7 2.9 0.26 -0.43 

pH 175 7.60 7.59 7.64 6.40 8.30 0.14 0.37 -0.91 1.13 

EC 175 368 319 366 28 882 29948 173 0.50 0.42 

δ18O 174 -9.25   -9.23 -11.43 -6.49 0.88 0.94 0.25 0.15 

δ2H 174 -61.6   -62.5 -78.6 -40.6 55.7 7.5 0.44 0.25 

d-excess 174 12.4 12.2 12.4 6.0 21.4 4.1 2.0 0.53 2.33 

δ13C-DIC 173 -12.1   -12.9 -20.6 -0.7 13.7 3.7 0.9 1.7 

δ15Ntot 133 4.2   3.7 -2.8 18.6 17.2 4.1 0.8 0.9 
3H 172 6.14 5.80 6.01 0.48 11.77 2.85 1.69 -0.19 2.17 

Ca2+ 175 60 49 58 2 152 886 30 0.52 0.65 

Mg2+ 175 13.0 9.0 9.5 1.0 42.0 102.8 10.1 0.91 -0.19 

Na+ 175 3.7 1.9 2.0 0.1 36.0 28.5 5.3 3.29 12.67 

K+ 175 0.82 0.41 0.44 0.04 12.00 2.57 1.60 5.07 28.09 

HCO3- 175 235 201 234 19 575 12060 110 0.16 -0.28 

Cl- 175 5.00 2.35 2.34 0.12 36.70 50.38 7.10 2.55 6.40 

NO3- 175 9.56 4.94 4.47 0.33 92.56 251.73 15.87 3.51 12.96 

SO42- 175 10.06 6.37 5.66 0.75 67.40 132.02 11.49 2.50 6.96 

Si 174 3.19 1.98 1.86 0.17 13.44 9.16 3.03 1.39 1.34 

Mn 174 0.82 0.26 0.23 0.03 22.11 6.48 2.55 5.89 38.49 
 
 
Table: Tests of normality for raw data 

Parameter n max D K-S (p) Lilliefors (p) W p χ2 

T 174 0.06 p > .20 p > .20 0.98 0.0409 0.94 

pH 175 0.09 p < ,10 p < ,01 0.95 0.0000 7.78 

EC 175 0.07 p > .20 p < ,10 0.98 0.0043 1.80 

δ18O 174 0.06 p > .20 p < ,10 0.99 0.2377 3.42 

δ2H 174 0.07 p > .20 p < ,05 0.98 0.0159 4.80 

d-excess 174 0.06 p > .20 p < ,10 0.97 0.0016 0.75 

δ13C-DIC 173 0.15 p < ,01 p < ,01 0.90 0.0000 58.15 

δ15Ntot 133 0.07 p > .20 p < ,10 0.95 0.0001 1.47 

3H 172 0.08 p > .20 p < ,01 0.95 0.0000 6.69 

Ca2+ 175 0.07 p > .20 p < ,05 0.97 0.0020 2.76 

Mg2+ 175 0.18 p < ,01 p < ,01 0.89 0.0000 28.08 

Na+ 175 0.25 p < ,01 p < ,01 0.60 0.0000 210.99 

K+ 175 0.31 p < ,01 p < ,01 0.41 0.0000 268.45 

HCO3- 175 0.05 p > .20 p > .20 0.98 0.0483 1.11 

Cl- 175 0.27 p < ,01 p < ,01 0.64 0.0000 216.34 

NO3- 175 0.34 p < ,01 p < ,01 0.51 0.0000 294.28 

SO42- 175 0.24 p < ,01 p < ,01 0.69 0.0000 103.61 

Si 174 0.18 p < ,01 p < ,01 0.83 0.0000 10.87 

Mn 174 0.39 p < ,01 p < ,01 0.29 0.0000 382.46 

 
 



 

Table: Descriptive statistics of transformed data 
 

Parameter n X XG Md Min Max VAR=S2 S A E 

T 174 2.0 2.0 2.0 2.0 2.1 0.0 0.0 0.20 -0.47 

pH 175 2.03 2.03 2.03 2.03 2.03 0.00 0.00 -0.92 1.15 

EC 175 3 3 3 2 3 0 0 -0.72 0.67 

δ18O 174 1.96 1.96 1.96 1.95 1.97 0.00 0.00 0.22 0.13 

δ2H 174 1.6 1.6 1.6 1.3 1.8 0.0 0.1 -0.18 0.32 

d-excess 174 2.1 2.1 2.1 2.0 2.1 0.0 0.0 0.42 2.10 

δ13C-DIC 173 1.9 1.9 1.9 1.9 2.0 0.0 0.0 0.7 1.5 

δ15Ntot 131 2.0 2.0 2.0 2.0 2.1 0.0 0.0 0.7 0.5 
3H 172 2.03 2.03 2.03 2.00 2.05 0.00 0.01 -0.28 2.27 

Ca2+ 175 2 2 2 2 2 0 0 -0.07 0.05 

Mg2+ 175 2.1 2.1 2.0 2.0 2.2 0.0 0.0 0.79 -0.45 

Na+ 175 2.0 2.0 2.0 2.0 2.1 0.0 0.0 3.05 10.71 

K+ 175 2.00 2.00 2.00 2.00 2.05 0.00 0.01 4.97 27.17 

HCO3- 175 2 2 3 2 3 0 0 -0.68 0.09 

Cl- 175 2.02 2.02 2.01 2.00 2.14 0.00 0.03 2.39 5.49 

NO3- 175 2.04 2.04 2.02 2.00 2.28 0.00 0.05 3.09 9.96 

SO42- 175 2.04 2.04 2.02 2.00 2.22 0.00 0.04 2.17 4.93 

Si 174 2.01 2.01 2.01 2.00 2.05 0.00 0.01 1.33 1.13 

Mn 174 2.00 2.00 2.00 2.00 2.09 0.00 0.01 5.71 35.93 
 
 
Table: Tests of normality for transformed data 
 

Parameter n max D K-S (p) Lilliefors (p) W p χ2 

T 174 0.05 p > .20 p > .20 0.99 0.0658 1.49 

pH 175 0.09 p < ,10 p < ,01 0.95 0.0000 7.78 

EC 175 0.10 p < ,05 p < ,01 0.96 0.0001 11.67 

δ18O 174 0.06 p > .20 p < ,15 0.99 0.3008 3.42 

δ2H 174 0.06 p > .20 p > .20 0.99 0.2044 3.61 

d-excess 174 0.06 p > .20 p < ,10 0.98 0.0044 0.76 

δ13C-DIC 173 0.15 p < ,01 p < ,01 0.91 0.0000 53.24 

δ15Ntot 131 0.07 p > .20 p < ,20 0.96 0.0009 0.88 

3H 172 0.08 p < ,20 p < ,01 0.95 0.0000 6.37 

Ca2+ 175 0.05 p > .20 p > .20 0.99 0.1060 6.37 

Mg2+ 175 0.17 p < ,01 p < ,01 0.91 0.0000 28.08 

Na+ 175 0.25 p < ,01 p < ,01 0.63 0.0000 112.47 

K+ 175 0.31 p < ,01 p < ,01 0.42 0.0000 268.45 

HCO3- 175 0.09 p < ,15 p < ,01 0.96 0.0000 6.37 

Cl- 175 0.26 p < ,01 p < ,01 0.67 0.0000 90.44 

NO3- 175 0.33 p < ,01 p < ,01 0.57 0.0000 283.67 

SO42- 175 0.22 p < ,01 p < ,01 0.73 0.0000 86.73 

Si 174 0.18 p < ,01 p < ,01 0.84 0.0000 12.53 

Mn 174 0.39 p < ,01 p < ,01 0.30 0.0000 369.22 
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Figure: Number of factors versus the number of eigenvalues 
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Detailed information on studied groundwater parameters 
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Oxygen isotopic composition in Slovenian groundwaters 
 

Table: Groundwater δ18O value according to major rock type 
Major rock type class n X Md Min Max S 

clastic sedimentary rocks 52 -8.85 -8.90 -10.50 -6.49 0.92 

carbonate rocks 110 -9.35 -9.44 -11.43 -6.88 0.88 

igneous and metamorphic rocks 12 -10.06 -10.27 -10.90 -8.88 0.78 
 
Table: Groundwater δ18O value according to prevailing lithological unit 
Lithological class n X Md Min Max S 

flysch rocks 6 -7.36 -7.27 -8.14 -6.49 0.59 

clay 2 -9.72 -9.72 -10.13 -9.30 0.59 

gravel and sand 26 -8.65 -8.71 -9.66 -7.07 0.61 

gravel, sand and clay 12 -9.76 -10.05 -10.50 -8.79 0.62 

shale and sandstone 6 -9.14 -8.89 -9.88 -8.65 0.53 

limestone prevailing 74 -9.32 -9.32 -11.43 -6.88 1.02 

dolomite prevailing 30 -9.41 -9.52 -10.34 -8.23 0.52 

carbonates with clastics 6 -9.40 -9.46 -9.89 -8.87 0.41 

igneous rocks 8 -9.71 -9.54 -10.84 -8.88 0.72 

metamorphic rocks 4 -10.77 -10.77 -10.90 -10.64 0.14 
 
Table: Groundwater δ18O value according to prevailing lithostratigraphic unit 
Lithostratigraphic class n X Md Min Max S 

old Paleozoic rocks 4 -10.77 -10.77 -10.90 -10.64 0.14 

Carboniferous-Permian beds 4 -8.81 -8.82 -8.94 -8.65 0.12 

Permian Val Gardena layers 2 -9.82 -9.82 -9.88 -9.75 0.09 

Ladinian igneous rocks 2 -9.45 -9.45 -9.47 -9.43 0.03 

Triassic carbonates 70 -9.54 -9.56 -11.43 -7.91 0.70 

Jurassic carbonates 8 -9.10 -9.14 -10.14 -8.10 0.72 

Cretaceous carbonates 28 -8.85 -8.76 -11.20 -6.88 1.13 

Eocene flysch rocks 6 -7.36 -7.27 -8.14 -6.49 0.59 

Oligocene igneous rocks 6 -9.80 -9.76 -10.84 -8.88 0.83 

Oligocene clay “sivica” 2 -9.72 -9.72 -10.13 -9.30 0.59 
Miocene Lithothamnium 
limestone 4 -10.13 -10.22 -10.32 -9.74 0.27 

Miocene clastics 4 -8.98 -9.00 -9.13 -8.79 0.14 

Pliocene clastics 8 -10.15 -10.17 -10.50 -9.65 0.26 
Quaternary  clastics (medium- 
and coarse-grained) 26 -8.65 -8.71 -9.66 -7.07 0.61 

 
Table: Groundwater δ18O value according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 40 -9.04 -9.00 -10.50 -7.07 0.80 

fractured porosity 24 -9.16 -9.19 -10.90 -6.49 1.30 

fractured  and karstic porosity 30 -9.41 -9.52 -10.34 -8.23 0.52 

karstic and fractured  porosity 74 -9.32 -9.32 -11.43 -6.88 1.02 
mixed porosity (karstic, fractured, 
intergranular) 6 -9.40 -9.46 -9.89 -8.87 0.41 
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    Table: Groundwater δ18O value according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 36 -9.44 -9.44 -11.20 -7.97 0.80 

borehole 10 -7.94 -7.70 -9.16 -6.88 0.93 

private well 8 -8.91 -9.00 -9.66 -8.28 0.44 

spring capture 44 -9.52 -9.73 -11.43 -6.49 1.05 

spring 58 -9.27 -9.01 -10.95 -8.05 0.70 

surface water 18 -9.06 -8.91 -11.10 -7.13 1.16 
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Deuterium isotopic composition in Slovenian groundwaters 
 

Table: Groundwater δ2H value according to major rock type 
Major rock type classification n X Md Min Max S 

clastic sedimentary rocks 52 -59.6 -60.7 -72.0 -40.6 7.7 

carbonate rocks 110 -62.0 -63.5 -78.6 -44.0 7.3 

igneous and metamorphic rocks 12 -67.0 -67.1 -73.1 -60.1 5.2 
 
Table: Groundwater δ2H value according to prevailing lithological unit 
Lithological class n X Md Min Max S 

flysch rocks 6 -45.3 -45.2 -50.5 -40.6 4.2 

clay 2 -63.3 -63.3 -63.8 -62.8 0.7 

gravel and sand 26 -59.1 -59.5 -67.0 -44.0 5.2 

gravel, sand and clay 12 -67.0 -69.0 -72.0 -60.6 4.6 

shale and sandstone 6 -60.5 -59.3 -66.1 -56.4 4.1 

limestone prevailing 74 -61.5 -61.6 -78.6 -44.0 8.3 

dolomite prevailing 30 -62.8 -64.2 -70.5 -52.2 4.4 

carbonates with clastics 6 -63.8 -65.4 -67.6 -58.1 4.0 

igneous rocks 8 -65.0 -63.2 -73.1 -60.1 5.2 

metamorphic rocks 4 -71.1 -71.1 -72.3 -69.9 1.0 
 

Table: Groundwater δ2H value according to prevailing lithostratigraphic unit 
Lithostratigraphic class n X Md Min Max S 

old Paleozoic rocks 4 -71.1 -71.1 -72.3 -69.9 1.0 

Carboniferous-Permian beds 4 -58.0 -58.1 -59.4 -56.4 1.5 

Permian Val Gardena layers 2 -65.6 -65.6 -66.1 -65.1 0.7 

Ladinian igneous rocks 2 -62.5 -62.5 -62.5 -62.4 0.1 

Triassic carbonates 70 -63.5 -64.5 -78.6 -50.7 5.5 

Jurassic carbonates 8 -59.5 -59.0 -69.5 -50.5 7.3 

Cretaceous carbonates 28 -58.2 -57.2 -78.0 -44.0 9.7 

Eocene flysch rocks 6 -45.3 -45.2 -50.5 -40.6 4.2 

Oligocene igneous rocks 6 -65.8 -64.1 -73.1 -60.1 5.9 

Oligocene clay “sivica” 2 -63.3 -63.3 -63.8 -62.8 0.7 

Miocene Lithothamnium limestone 4 -67.3 -67.2 -69.6 -65.1 2.4 

Miocene clastics 4 -61.0 -60.7 -61.9 -60.6 0.6 

Pliocene clastics 8 -69.9 -70.2 -72.0 -67.2 1.5 
Quaternary  clastics (medium- and 
coarse-grained) 26 -59.1 -59.5 -67.0 -44.0 5.2 

 
Table: Groundwater δ2H value according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 40 -61.7 -61.7 -72.0 -44.0 6.0 

fractured porosity 24 -60.0 -61.4 -73.1 -40.6 10.1 

fractured  and karstic porosity 30 -62.8 -64.2 -70.5 -52.2 4.4 

karstic and fractured  porosity 74 -61.5 -61.6 -78.6 -44.0 8.3 
mixed porosity (karstic, fractured, 
intergranular) 6 -63.8 -65.4 -67.6 -58.1 4.0 
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Table: Groundwater δ2H value according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 36 -64.4 -64.5 -78.0 -52.2 6.1 

borehole 10 -52.5 -48.4 -63.7 -44.0 8.7 

private well 8 -60.8 -60.7 -67.0 -56.9 3.2 

spring capture 44 -63.0 -65.1 -78.6 -40.6 8.2 

spring 58 -61.4 -60.5 -75.4 -49.0 5.7 

surface water 18 -58.9 -56.8 -74.9 -43.3 9.2 
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Groundwater d-excess 
 
Table: Groundwater d-excess value according to major rock type 
Major rock type class n X Md Min Max S 

clastic sedimentary rocks 52 11.20 10.65 6.00 18.24 2.27 

carbonate rocks 110 12.82 12.70 8.90 21.40 1.69 

igneous and metamorphic rocks 12 13.49 13.49 10.88 17.10 1.75 
 
Table: Groundwater d-excess value according to prevailing lithological unit 
Lithological class n X Md Min Max S 

flysch rocks 6 13.60 14.10 10.00 18.00 2.89 

clay 2 14.42 14.42 10.60 18.24 5.40 

gravel and sand 26 10.10 10.30 6.00 13.10 1.54 

gravel, sand and clay 12 11.14 10.92 8.60 14.80 1.62 

shale and sandstone 6 12.61 12.60 11.10 14.30 1.07 

limestone prevailing 74 13.09 13.00 8.90 21.40 1.86 

dolomite prevailing 30 12.43 12.30 10.50 14.40 1.00 

carbonates with clastics 6 11.48 11.50 9.50 12.86 1.15 

igneous rocks 8 12.72 12.97 10.88 14.98 1.39 

metamorphic rocks 4 15.03 14.50 14.00 17.10 1.44 
 
Table: Groundwater d-excess value according to prevailing lithostratigraphic unit 
Lithostratigraphic class n X Md Min Max S 

old Paleozoic rocks 4 15.03 14.50 14.00 17.10 1.44 

Carboniferous-Permian beds 4 12.45 12.20 11.10 14.30 1.34 

Permian Val Gardena layers 2 12.92 12.92 12.90 12.94 0.03 

Ladinian igneous rocks 2 13.15 13.15 12.94 13.36 0.30 

Triassic carbonates 70 12.78 12.70 8.90 17.10 1.48 

Jurassic carbonates 8 13.24 12.35 10.20 21.40 3.62 

Cretaceous carbonates 28 12.68 12.50 10.10 15.96 1.43 

Eocene flysch rocks 6 13.60 14.10 10.00 18.00 2.89 

Oligocene igneous 6 12.58 12.52 10.88 14.98 1.61 

Oligocene clay “sivica” 2 14.42 14.42 10.60 18.24 5.40 

Miocene Lithothamnium limestone 4 13.73 13.10 12.82 15.90 1.45 

Miocene clastics 4 10.85 10.66 9.62 12.44 1.23 

Pliocene clastics 8 11.29 11.15 8.60 14.80 1.84 
Quaternary  clastics (medium- and 
coarse-grained) 26 10.10 10.30 6.00 13.10 1.54 

 
Table: Groundwater d-excess value according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 40 10.63 10.40 6.00 18.24 2.00 

fractured porosity 24 13.30 13.18 10.00 18.00 1.93 

fractured  and karstic porosity 30 12.43 12.30 10.50 14.40 1.00 

karstic and fractured  porosity 74 13.09 13.00 8.90 21.40 1.86 
mixed porosity (karstic, fractured, 
intergranular) 6 11.48 11.50 9.50 12.86 1.15 
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Table: Groundwater d-excess value according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 36 11.15 11.50 6.00 14.10 1.67 

borehole 10 11.07 11.18 7.70 13.80 1.77 

private well 8 10.45 10.24 9.30 12.44 0.99 

spring capture 58 12.73 12.55 8.30 21.40 1.98 

spring 44 13.10 12.97 9.50 18.24 1.95 

surface water 18 13.59 13.80 10.00 16.50 1.48 
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pH in Slovenian groundwaters 
 
Table: Groundwater pH value according to major rock type  
Major rock type class n X Md Min Max S 

clastic sedimentary rocks 53 7.37 7.38 6.41 8.30 0.43 

carbonate rocks 110 7.73 7.72 7.30 8.22 0.23 

igneous and metamorphic rocks 12 7.43 7.54 6.40 8.10 0.57 
 
Table: Groundwater pH value according to prevailing lithological unit 
Lithological unit n X Md Min Max S 

flysch rocks 7 7.85 7.85 7.29 8.20 0.31 

clay 2 7.85 7.85 7.80 7.90 0.07 

gravel and sand 26 7.25 7.37 6.41 8.30 0.41 

gravel, sand and clay 11 7.08 7.00 6.84 7.44 0.19 

shale and sandstone 7 7.67 7.70 7.30 7.93 0.19 

limestone prevailing 74 7.76 7.76 7.30 8.22 0.25 

dolomite prevailing 30 7.68 7.68 7.30 7.98 0.16 

carbonates with clastics 6 7.66 7.67 7.40 7.90 0.18 

igneous rocks 8 7.59 7.75 6.40 8.10 0.56 

metamorphic rocks 4 7.11 7.10 6.65 7.58 0.48 
 
Table: Groundwater pH value according to prevailing lithostratigraphic unit 
Lithostratigraphic unit n X Md Min Max S 

old Paleozoic rocks 4 7.11 7.10 6.65 7.58 0.48 

Carboniferous-Permian beds 5 7.74 7.72 7.63 7.93 0.13 

Permian Val Gardena layers 2 7.50 7.50 7.30 7.70 0.28 

Ladinian igneous rocks 2 7.75 7.75 7.70 7.80 0.07 

Triassic carbonates 70 7.79 7.76 7.30 8.22 0.23 

Jurassic carbonates 8 7.79 7.89 7.39 8.05 0.25 

Cretaceous carbonates 28 7.59 7.57 7.30 7.83 0.16 

Eocene flysch rocks 7 7.85 7.85 7.29 8.20 0.31 

Oligocene igneous rocks 6 7.53 7.75 6.40 8.10 0.66 

Oligocene clay “sivica” 2 7.85 7.85 7.80 7.90 0.07 

Miocene Lithothamnium limestone 4 7.68 7.67 7.60 7.80 0.10 

Miocene clastics 4 6.98 7.00 6.90 7.00 0.05 

Pliocene clastics 7 7.14 7.15 6.84 7.44 0.22 
Quaternary  clastics (medium- and 
coarse-grained) 26 7.25 7.37 6.41 8.30 0.41 

 
Table: Groundwater pH value according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 7.23 7.30 6.41 8.30 0.38 

fractured porosity 26 7.61 7.70 6.40 8.20 0.45 

fractured  and karstic porosity 30 7.68 7.68 7.30 7.98 0.16 

karstic and fractured  porosity 74 7.76 7.76 7.30 8.22 0.25 
mixed porosity (karstic, fractured, 
intergranular 6 7.66 7.67 7.40 7.90 0.18 
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Table: Groundwater pH value according to the prevailing CORINE Land Cover type 
CORINE Land Cover class n X Md Min Max S 

bare rocks 8 8.00 7.97 7.93 8.12 0.07 

moors and heathland 2 8.09 8.09 8.05 8.13 0.06 

natural grasslands 2 7.66 7.66 7.52 7.79 0.19 

coniferous forest 20 7.70 7.77 6.40 8.19 0.41 

broad-leaved forest 45 7.69 7.70 6.70 8.22 0.32 

mixed forest 56 7.60 7.65 6.65 8.09 0.31 

non-irrigated arable land 10 7.00 7.14 6.41 7.43 0.40 

complex cultivation patterns 18 7.45 7.44 7.00 7.90 0.24 
land principally occupied by agriculture, 
with significant areas of natural 
vegetation 

10 7.58 7.69 6.90 8.30 0.42 

industrial or commercial units 2 7.45 7.45 7.43 7.47 0.03 
 
Table: Groundwater pH value according to the prevailing Actual agricultural and forest land 
usage type  
Actual agricultural and forest land 
usage class n X Md Min Max S 

forest 137 7.67 7.70 6.40 8.22 0.33 
areas of less intense use of nutrients 
and plant protection products 18 7.46 7.51 6.90 7.90 0.31 

areas of intense use of nutrients and 
plant protection products 16 7.22 7.30 6.41 8.30 0.48 

urban areas 2 7.45 7.45 7.43 7.47 0.03 
 
Table: Groundwater pH value according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 7.41 7.47 6.62 7.90 0.35 

borehole 10 7.20 7.37 6.41 7.47 0.39 

private well 8 7.21 7.07 6.90 8.30 0.45 

spring capture 44 7.64 7.67 6.65 8.22 0.31 

spring 58 7.68 7.72 6.40 8.10 0.29 

surface water 20 7.97 7.97 7.63 8.20 0.19 
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EC in Slovenian groundwaters 
 
Table: Groundwater EC value according to the major rock type  
Major rock type group n X Md Min Max S 

clastic sedimentary rocks 53 477 475 75 882 215 

carbonate rocks 110 346 361 152 592 105 
igneous and metamorphic 
rocks 12 97 98 28 179 58 

 
Table: Groundwater EC value according to prevailing lithological unit  
Lithological unit n X Md Min Max S 

flysch rocks 7 466 393 317 719 175 

clay 2 317 317 304 330 18 

gravel and sand 26 548 538 252 882 154 

gravel, sand and clay 11 569 590 188 866 214 

shale and sandstone 7 124 107 75 220 53 

limestone prevailing 74 322 346 152 496 97 

dolomite prevailing 30 404 404 243 592 101 

carbonates with clastics 6 350 296 233 518 131 

igneous rocks 8 102 102 28 179 62 

metamorphic rocks 4 87 84 37 143 57 
 
Table: Groundwater EC value according to prevailing lithostratigraphic unit 
Lithostratigraphic unit n X Md Min Max S 

Old Paleozoic rocks 4 87 84 37 143 57 

Carboniferous-Permian beds 5 95 95 75 124 21 

Permian Val Gardena layers 2 195 195 169 220 36 

Ladinian igneous rocks 2 170 170 161 179 13 

Triassic carbonates 70 331 325 152 592 119 

Jurassic carbonates 8 295 280 167 401 83 

Cretaceous carbonates 28 383 377 304 496 52 

Eocene flysch rocks 7 466 393 317 719 175 

Oligocene igneous rocks 6 79 65 28 152 53 

Oligocene clay “sivica” 2 317 317 304 330 18 
Miocene Lithothamnium 
limestone 4 433 431 398 470 33 

Miocene clastics 4 766 802 594 866 121 

Pliocene clastics 7 456 563 188 602 168 
Quaternary  clastics (medium- 
and coarse-grained) 26 548 538 252 882 154 

 
Table: Groundwater EC value according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 542 556 188 882 175 

fractured porosity 26 203 140 28 719 190 

fractured  and karstic porosity 30 404 404 243 592 101 

karstic and fractured  porosity 74 322 346 152 496 97 

mixed porosity 6 350 296 233 518 131 
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Table: Groundwater EC value according to prevailing CORINE Land Cover type 
CORINE Land Cover class n X Md Min Max S 

bare rocks 8 194 177 156 281 47 

moors and heathland 2 156 156 152 159 5 

natural grasslands 2 351 351 337 365 20 

coniferous forest 20 228 210 28 588 156 

broad-leaved forest 45 349 361 167 518 94 

mixed forest 56 344 360 37 719 152 

non-irrigated arable land 10 549 469 425 882 168 

complex cultivation patterns 18 536 515 304 866 158 
land principally occupied by agriculture, 
with significant areas of natural vegetation 10 492 459 161 772 224 

industrial or commercial units 2 581 581 556 605 35 
 
Table: Groundwater EC value according to prevailing Actual agricultural and forest land usage 
type  
Actual agricultural and forest land usage 
class n X Md Min Max S 

forest 137 325 337 28 719 141 
areas of less intense use of nutrients and 
plant protection products 18 450 447 161 866 215 

areas of intense use of nutrients and plant 
protection products 16 591 565 402 882 157 

urban areas 2 581 581 556 605 35 
 
Table: Groundwater EC value according to the sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 438 434 188 605 108 

borehole 10 505 468 425 674 91 

private well 8 786 802 594 882 93 

spring capture 44 324 334 37 719 175 

spring 58 322 329 28 627 117 

surface water 20 244 185 75 470 126 
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Ca2+ in Slovenian groundwater 
 
Table: Groundwater Ca2+ concentration according to major rock type  
Major rock type n X Md Min Max S 

clastic sedimentary rocks 53 75 79 6 152 39 

carbonate rocks 110 57 57 25 92 18 

igneous and metamorphic rocks 12 15 14 2 31 11 
 
Table: Groundwater Ca2+ concentration according to prevailing lithological unit 
Lithological unit n X Md Min Max S 

flysch rocks 7 88 72 53 145 40 

clay 2 37 37 36 37 1 

gravel and sand 26 85 90 28 122 25 

gravel, sand and clay 11 90 95 20 152 46 

shale and sandstone 7 15 15 6 29 8 

limestone prevailing 74 58 62 25 92 20 

dolomite prevailing 30 55 55 39 76 11 

carbonates with clastics 6 56 49 46 73 13 

igneous rocks 8 16 15 2 31 12 

metamorphic rocks 4 11 11 2 22 11 
 
Table: Groundwater Ca2+ concentration according to prevailing lithostratigraphic unit 
Lithostratigraphic unit n X Md Min Max S 

old Paleozoic rocks 4 11 11 2 22 11 

Carboniferous-Permian beds 5 11 8 6 17 5 

Permian Val Gardena layers 2 26 26 22 29 5 

Ladinian igneous rocks 2 31 31 30 31 1 

Triassic carbonates 70 50 51 25 84 16 

Jurassic carbonates 8 58 51 38 92 20 

Cretaceous carbonates 28 71 72 54 91 10 

Eocene flysch rocks 7 88 72 53 145 40 

Oligocene igneous rocks 6 11 9 2 25 10 

Oligocene clay “sivica” 2 37 37 36 37 1 

Miocene Lithothamnium limestone 4 73 74 68 77 4 

Miocene clastics 4 139 144 118 152 15 

Pliocene clastics 7 62 72 20 97 30 
Quaternary  clastics (medium- and 
coarse-grained) 26 85 90 28 122 25 

 
Table: Groundwater Ca2+ concentration according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 84 89 20 152 33 

fractured porosity 26 34 22 2 145 39 

fractured  and karstic porosity 30 55 55 39 76 11 

karstic and fractured  porosity 74 58 62 25 92 20 

mixed porosity 6 56 49 46 73 13 
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Table: Groundwater Ca2+ concentrations according to prevailing CORINE Land Cover type 
CORINE Land Cover class n X Md Min Max S 

bare rocks 8 31 29 26 41 6 

moors and heathland 2 26 26 25 27 1 

natural grasslands 2 61 61 59 63 3 

coniferous forest 20 39 39 2 102 28 

broad-leaved forest 45 58 57 22 91 18 

mixed forest 56 56 59 2 145 29 

non-irrigated arable land 10 82 86 54 122 25 

complex cultivation patterns 18 85 86 36 146 29 
land principally occupied by agriculture, 
with significant areas of natural vegetation 10 80 70 30 152 42 

industrial or commercial units 2 88 88 81 94 9 
 
Table: Groundwater Ca2+ concentrations according to prevailing Actual agricultural and forest 
land usage type 
Actual agricultural and forest land usage 
class n X Md Min Max S 

forest 137 54 56 2 145 26 
areas of less intense use of nutrients and 
plant protection products 18 74 61 22 152 43 

areas of intense use of nutrients and 
plant protection products 16 88 92 54 122 23 

urban areas 2 88 88 81 94 9 
 
Table: Groundwater Ca2+ concentrations according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 65 70 20 102 20 

borehole 10 80 81 55 97 15 

private well 8 128 120 110 152 16 

spring capture 44 52 54 2 145 32 

spring 58 56 57 2 103 23 

surface water 20 40 31 6 73 23 
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Mg2+ in Slovenian groundwaters 
 
Table: Groundwater Mg2+ concentration according to major rock type 
Major rock type n X Md Min Max S 

clastic sedimentary rocks 53 16.2 14.0 2.1 42.0 9.4 

carbonate rocks 110 12.7 8.8 1.0 36.0 10.1 

igneous and metamorphic rocks 12 1.4 1.0 1.0 2.9 0.7 
 
Table: Groundwater Mg2+ concentration according to prevailing lithological unit  
Lithological unit n X Md Min Max S 

flysch rocks 7 7.1 6.3 5.1 12.0 2.5 

clay 2 5.8 5.8 5.7 5.9 0.1 

gravel and sand 26 18.8 22.0 11.0 26.0 5.3 

gravel, sand and clay 11 24.5 22.0 9.8 42.0 10.7 

shale and sandstone 7 5.1 3.4 2.1 12.0 4.0 

limestone prevailing 74 7.9 7.3 1.0 27.0 5.0 

dolomite prevailing 30 23.8 25.5 4.3 36.0 10.0 

carbonates with clastics 6 16.0 11.5 2.8 34.0 14.1 

igneous rocks 8 1.6 1.0 1.0 2.9 0.8 

metamorphic rocks 4 1.0 1.0 1.0 1.0 0.0 
 
Table: Groundwater Mg2+ concentration according to prevailing lithostratigraphic unit  
Lithostratigraphic unit n X Md Min Max S 

old Paleozoic rocks 4 1.0 1.0 1.0 1.0 0.0 

Carboniferous-Permian beds 5 2.8 2.8 2.1 3.5 0.6 

Permian Val Gardena layers 2 10.8 10.8 9.5 12.0 1.8 

Ladinian igneous rocks 2 1.7 1.7 1.0 2.3 0.9 

Triassic carbonates 70 15.2 11.0 2.8 36.0 11.3 

Jurassic carbonates 8 5.6 5.2 3.2 8.6 2.2 

Cretaceous carbonates 28 8.2 7.5 1.0 27.0 5.8 

Eocene flysch rocks 7 7.1 6.3 5.1 12.0 2.5 

Oligocene igneous rocks 6 1.6 1.0 1.0 2.9 0.9 

Oligocene clay “sivica” 2 5.8 5.8 5.7 5.9 0.1 

Miocene Lithothamnium limestone 4 15.5 15.5 12.0 19.0 3.1 

Miocene clastics 4 29.3 31.0 13.0 42.0 14.1 

Pliocene clastics 7 21.8 22.0 9.8 32.0 8.2 
Quaternary  clastics (medium- and 
coarse-grained) 26 18.8 22.0 11.0 26.0 5.3 

 
Table: Groundwater Mg2+ concentration according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 19.8 22.0 5.7 42.0 8.1 

fractured porosity 26 3.9 2.7 1.0 12.0 3.4 

fractured  and karstic porosity 30 23.8 25.5 4.3 36.0 10.0 

karstic and fractured  porosity 74 7.9 7.3 1.0 27.0 5.0 
mixed porosity (karstic, fractured, 
intergranular) 6 16.0 11.5 2.8 34.0 14.1 
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Table: Groundwater Mg2+ concentration according to prevailing CORINE Land Cover type 
CLC class n X Md Min Max S 

bare rocks 8 5.7 3.8 2.8 12.0 3.7 

moors and heathland 2 4.7 4.7 4.3 5.0 0.5 

natural grasslands 2 8.8 8.8 8.6 9.0 0.3 

coniferous forest 20 5.8 3.8 1.0 22.0 6.2 

broad-leaved forest 45 12.2 8.5 1.0 34.0 9.5 

mixed forest 56 12.2 9.3 1.0 36.0 9.5 

non-irrigated arable land 10 16.2 14.0 11.0 24.0 5.0 

complex cultivation patterns 18 22.2 22.5 3.2 42.0 12.6 
land principally occupied by agriculture, 
with significant areas of natural 
vegetation 

10 17.5 20.5 1.0 26.0 9.4 

industrial or commercial units 2 22.5 22.5 22.0 23.0 0.7 
 
Table: Groundwater Mg2+ concentration according to prevailing Actual agricultural and forest 
land usage type 
Actual agricultural and forest land usage 
class n X Md Min Max S 

forest 137 11.1 7.7 1.0 36.0 9.5 
areas of less intense use of nutrients 
and plant protection products 18 18.7 17.5 1.0 42.0 12.4 

areas of intense use of nutrients and 
plant protection products 16 19.3 21.0 11.0 26.0 5.4 

urban areas 2 22.5 22.5 22.0 23.0 0.7 
 
Table: Groundwater Mg2+ concentration according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 20.6 22.0 3.8 36.0 10.1 

borehole 10 17.3 14.0 8.5 27.0 7.5 

private well 8 26.8 24.0 13.0 42.0 9.6 

spring capture 44 11.6 9.1 1.0 36.0 10.4 

spring 58 9.2 7.4 1.0 24.0 6.8 

surface water 20 6.1 4.9 2.8 19.0 4.3 
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Ca2+/Mg2+ molar ratio in Slovenian groundwaters 
 
Table: Groundwater Ca2+/Mg2+ molar ratio according to major rock type 
Major rock type n X Md Min Max S 

clastic sedimentary rocks 53 3.3 2.7 1.2 10.1 1.9 

carbonate rocks 108 4.3 3.6 1.0 15.9 3.3 

igneous and metamorphic rocks 3 6.2 5.3 5.2 8.2 1.7 
 
Table: Groundwater Ca2+/Mg2+ molar ratio according to prevailing lithological unit 
Major lithological units  n X Md Min Max S 

flysch rocks 7 7.3 7.0 6.2 10.1 1.3 

clay 2 3.8 3.8 3.7 3.9 0.2 

gravel and sand 26 2.8 2.7 1.4 4.6 0.7 

gravel, sand and clay 11 2.4 2.1 1.2 5.5 1.4 

shale and sandstone 7 2.3 1.4 1.3 4.5 1.5 

 imestone prevailing 72 5.3 4.4 1.7 15.9 3.2 

dolomite prevailing 30 1.9 1.3 1.0 7.9 1.6 

carbonates with clastics 6 4.5 2.5 1.3 10.2 4.0 

igneous rocks 3 6.2 5.3 5.2 8.2 1.7 

metamorphic rocks 0      
 
Table: Groundwater Ca2+/Mg2+molar ratio according to prevailing lithostratigraphic units 
Lithostratigraphic unit n X Md Min Max S 

old Paleozoic rocks 0      
Carboniferous-Permian beds 5 2.6 1.4 1.3 4.5 1.7 

Permian Val Gardena layers 2 1.4 1.4 1.4 1.5 0.0 

Ladinian igneous rocks 1 8.2 8.2 8.2 8.2  
Triassic carbonates 70 3.3 2.4 1.0 13.1 2.6 

Jurassic carbonates 8 7.7 5.3 3.2 15.9 5.3 

Cretaceous carbonates 26 6.3 5.5 1.8 12.3 2.9 

Eocene flysch rocks 7 7.3 7.0 6.2 10.1 1.3 

Oligocene igneous rocks 2 5.3 5.3 5.2 5.3 0.1 

Oligocene clay ˝sivica˝ 2 3.8 3.8 3.7 3.9 0.2 

Miocene Lithothamnium limestone 4 3.0 2.9 2.2 3.9 0.8 

Miocene clastics 4 3.5 3.2 2.1 5.5 1.7 

Pliocene clastics 7 1.7 1.4 1.2 2.7 0.6 
Quaternary  clastics (medium- and 
coarse-grained) 26 2.8 2.7 1.4 4.6 0.7 
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HCO3
- in Slovenian groundwaters 

 
Table: Groundwater HCO3

- concentration according to major rock type 
Major rock type n X Md Min Max S 

clastic sedimentary rocks 53 270 306 32 575 130 

carbonate rocks 110 238 235 72 471 85 

igneous and metamorphic rocks 12 60 57 19 106 35 
 
Table: Groundwater HCO3

- concentration according to prevailing lithological unit 
Lithological class n X Md Min Max S 

flysch rocks 7 287 242 182 464 101 

clay 2 168 168 159 176 12 

gravel and sand 26 293 330 97 383 92 

gravel, sand and clay 11 352 355 123 575 139 

shale and sandstone 7 67 46 32 145 44 

limestone prevailing 74 215 223 72 384 73 

dolomite prevailing 30 291 303 167 471 85 

carbonates with clastics 6 255 217 162 384 105 

igneous rocks 8 61 57 19 106 36 

metamorphic rocks 4 58 55 24 96 38 
 
Table: Groundwater HCO3

- concentration according to prevailing lithostratigraphic unit 
Lithostratigraphic class n X Md Min Max S 

old Paleozoic rocks 4 58 55 24 96 38 

Carboniferous-Permian beds 5 43 38 32 60 11 

Permian Val Gardena layers 2 130 130 114 145 22 

Ladinian igneous rocks 2 105 105 104 106 1 

Triassic carbonates 70 233 224 72 471 97 

Jurassic carbonates 8 202 178 140 310 63 

Cretaceous carbonates 28 256 250 176 384 53 

Eocene flysch rocks 7 287 242 182 464 101 

Oligocene igneous rocks 6 47 38 19 89 28 

Oligocene clay ˝sivica˝ 2 168 168 159 176 12 

Miocene Lithothamnium limestone 4 277 279 267 282 7 

Miocene clastics 4 473 500 317 575 113 

Pliocene clastics 7 283 349 123 373 102 
Quaternary  clastics (medium- and 
coarse-grained) 26 293 330 97 383 92 

 
Table: Groundwater HCO3

- concentration according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 303 336 97 575 111 

fractured porosity 26 123 87 19 464 117 

fractured  and karstic porosity 30 291 303 167 471 85 

karstic and fractured  porosity 74 215 223 72 384 73 
mixed porosity (karstic, fractured, 
intergranular) 6 255 217 162 384 105 
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Table: Groundwater HCO3
- concentration according to prevailing CORINE Land Cover type 

CLC class n X Md Min Max S 

bare rocks 8 117 111 72 154 25 

moors and heathland 2 117 117 106 127 15 

natural grasslands 2 234 234 218 250 23 

coniferous forest 20 148 144 19 383 97 

broad-leaved forest 45 234 234 113 384 78 

mixed forest 56 232 243 24 471 109 

non-irrigated arable land 10 254 303 97 373 106 

complex cultivation patterns 18 347 350 159 575 101 
land principally occupied by agriculture, 
with significant areas of natural vegetation 10 290 312 104 465 112 

industrial or commercial units 2 313 313 289 336 33 
 
Table: Groundwater HCO3

- concentration according to prevailing Actual agricultural and forest 
land usage type 
Land use type class  n X Md Min Max S 

forest 137 217 222 19 471 102 
areas of less intense use of nutrients and 
plant protection products 18 295 316 104 575 140 

areas of intense use of nutrients and plant 
protection products 16 294 351 97 373 98 

urban areas 2 313 313 289 336 33 
 
Table: Groundwater HCO3

- concentration according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 292 306 123 471 84 

borehole 10 278 307 97 384 104 

private well 8 420 373 317 575 93 

spring capture 44 215 215 24 464 117 

spring 58 213 219 19 382 83 

surface water 20 151 127 32 282 81 
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CaCO3 in Slovenian groundwaters 
 
Table: Groundwater CaCO3 (mmol/L) concentration according to major rock type  
Main rock type  n X Md Min Max S 

clastic sedimentary rocks 53 2.5 2.8 0.3 5.4 1.3 

carbonate rocks 110 1.9 1.9 0.8 3.4 0.7 
igneous and metamorphic  

12 0.4 0.4 0.1 0.9 0.3 
rocks 
 
Table: Groundwater CaCO3 (mmol/L) concentration according to prevailing lithological unit 

Lithological unit n X Md Min Max S 

flysch rocks 7 2.5 2.1 1.5 4.1 1.1 

clay 2 1.1 1.1 1.1 1.2 0 

gravel and sand 26 2.9 3.1 1.2 4 0.8 

gravel, sand and clay 11 3.3 3.3 0.9 5.4 1.4 

shale and sandstone 7 0.6 0.5 0.3 1.2 0.4 

limestone prevailing 74 1.8 1.9 0.8 3.1 0.6 

dolomite prevailing 30 2.4 2.4 1.4 3.4 0.6 

carbonates with clastics 6 2.1 1.7 1.3 3.2 0.9 

igneous rocks 8 0.5 0.5 0.1 0.9 0.3 

metamorphic rocks 4 0.3 0.3 0.1 0.6 0.3 
 
Table: Groundwater CaCO3

 (mmol/L) concentrations according to prevailing lithostratigraphic 
unit 
Lithostratigraphic units n X Md Min Max S 

old Paleozoic rocks 4 0.3 0.3 0.1 0.6 0.3 

Carboniferous-Permian beds 5 0.4 0.3 0.3 0.5 0.1 

Permian Val Gardena layers 2 1.1 1.1 0.9 1.2 0.2 

Ladinian igneous rocks 2 0.8 0.8 0.8 0.9 0.1 

Triassic carbonates 70 1.9 1.7 0.8 3.4 0.8 

Jurassic carbonates 8 1.7 1.5 1.2 2.4 0.5 

Cretaceous carbonates 28 2.1 2.0 1.5 3.1 0.4 

Eocene flysch rocks 7 2.5 2.1 1.5 4.1 1.1 

Oligocene igneous rocks 6 0.3 0.3 0.1 0.7 0.3 

Oligocene clay ˝sivica˝ 2 1.1 1.1 1.1 1.2 0.0 

Miocene Lithothamnium limestone 4 2.5 2.5 2.4 2.5 0.0 

Miocene clastics 4 4.7 4.9 3.5 5.4 0.8 

Pliocene clastics 7 2.5 3.1 0.9 3.3 1.0 
Quaternary  clastics (medium- and 
coarse-grained) 26 2.9 3.1 1.2 4.0 0.8 
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Table: Groundwater CaCO3
 (mmol/L) concentration according to prevailing aquifer porosity 

type 
Porosity type n X Md Min Max S 
intergranular porosity 39 2.9 3.1 0.9 5.4 1.1 
fractured porosity 26 1.0 0.6 0.1 4.1 1.2 
fractured  and karstic porosity 30 2.4 2.4 1.4 3.4 0.6 
karstic and fractured  porosity 74 1.8 1.9 0.8 3.1 0.6 
mixed porosity (karstic, fractured, 
intergranular) 

6 2.1 1.7 1.3 3.2 0.9 

 
Table: Groundwater CaCO3

 (mmol/L) concentration according to prevailing CORINE Land 
Cover type 
CORINE Land Cover class n X Md Min Max S 

bare rocks 8 1.0 0.9 0.8 1.5 0.3 

moors and heathland 2 0.8 0.8 0.8 0.9 0.1 

natural grasslands 2 1.9 1.9 1.8 1.9 0.1 

coniferous forest 20 1.2 1.2 0.1 3.4 0.9 

broad-leaved forest 45 1.9 2.0 0.9 3.2 0.6 

mixed forest 56 1.9 1.9 0.1 4.1 0.9 

non-irrigated arable land 10 2.7 2.8 1.8 4.0 0.8 

complex cultivation patterns 18 3.0 3.1 1.1 5.4 1.1 
land principally occupied by agriculture, 
with significant areas of natural 
vegetation 

10 2.7 2.5 0.8 4.7 1.3 

industrial or commercial units 2 3.1 3.1 3.0 3.2 0.2 
 
 
Table: Groundwater CaCO3

 (mmol/L) concentration according to prevailing Actual agricultural 
and forest land usage type 
Actual agricultural and forest land usage 
class n X Md Min Max S 

forest 137 1.8 1.8 0.1 4.1 0.9 
areas of less intense use of nutrients and 
plant protection products 18 2.6 2.7 0.8 5.4 1.4 

areas of intense use of nutrients and 
plant protection products 16 3.0 3.2 1.8 4.0 0.8 

urban areas 2 3.1 3.1 3.0 3.2 0.2 



13K 

Initial soil CO2 partial pressure in Slovenian groundwaters 
 
 
Open system: 
 
TITLE Open system (wateqf4.dat) 
SOLUTION 1 
pH 7.0  
temp 10.0 
equilibrium_phases 1 
CO2(g) -1.456 #I was changing those values from -4.00 to -0.70 
calcite 0.0 10.0 
save solution 1 
end  
 
 
Closed system: 
 
TITLE Closed system (wateqf4.dat) 
SOLUTION 1 
pH 7.0  
temp 10 
equilibrium_phases 1 
CO2(g) -1.824 #changing those values from -4.00 to -0.70 
save solution 1 
end 
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δ13C-DIC in Slovenian groundwater 
 
Table: Groundwater δ13C-DIC value according to major rock type  
Major rock type  n X Md Min Max S 

clastic sedimentary rocks 51 -13.4 -13.1 -18.7 -7.5 2.5 

carbonate rocks 110 -11.0 -12.5 -15.2 -0.7 3.6 

igneous and metamorphic rocks 12 -17.1 -17.8 -20.6 -12.9 3.0 
 
Table: Groundwater δ13C-DIC value according to prevailing lithological unit 
Lithological unit n X Md Min Max S 

flysch rocks 6 -11.7 -11.7 -13.3 -10.3 1.0 
clay 2 -14.9 -14.9 -15.8 -14.0 1.3 
gravel and sand 26 -13.8 -13.2 -18.0 -10.8 2.2 

gravel, sand and clay 11 -14.1 -13.3 -18.7 -12.3 2.0 

shale and sandstone 6 -11.4 -9.8 -17.3 -7.5 4.1 

limestone prevailing 74 -10.5 -12.2 -15.2 -0.7 4.2 

dolomite prevailing 30 -12.2 -12.9 -13.8 -9.2 1.4 

carbonates with clastics 6 -11.7 -12.5 -13.8 -9.0 2.1 

igneous rocks 8 -16.6 -16.4 -20.6 -12.9 3.3 

metamorphic rocks 4 -18.2 -18.4 -20.5 -15.7 2.3 
 
Table: Groundwater δ13-DIC value according to prevailing lithostratigraphic unit 
Lithostratigraphic unit n X Md Min Max S 

old Paleozoic rocks 4 -18.2 -18.4 -20.5 -15.7 2.3 
Carboniferous-Permian beds   4 -8.8 -8.9 -9.8 -7.5 1.1 
Permian Val Gardena layers 2 -16.5 -16.5 -17.3 -15.7 1.2 

Ladinian igneous rocks 2 -14.0 -14.0 -14.0 -13.9 0.1 

Triassic carbonates 70 -10.1 -11.9 -14.3 -0.7 4.1 

Jurassic carbonates 8 -11.3 -11.6 -14.6 -7.7 2.7 

Cretaceous carbonates 28 -13.1 -13.4 -15.2 -9.9 1.4 

Eocene flysch rocks 6 -11.7 -11.7 -13.3 -10.3 1.0 

Oligocene igneous rocks 6 -17.5 -19.0 -20.6 -12.9 3.4 

Oligocene clay ˝sivica˝ 2 -14.9 -14.9 -15.8 -14.0 1.3 

Miocene Lithothamnium limestone 4 -12.5 -12.5 -13.0 -11.8 0.5 

Miocene clastics 4 -13.5 -13.4 -14.7 -12.3 1.0 

Pliocene clastics 7 -14.5 -13.3 -18.7 -13.0 2.3 
Quaternary  clastics (medium- and 
coarse-grained) 26 -13.8 -13.2 -18.0 -10.8 2.2 

 
Table: Groundwater δ13-DIC value according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 -14.0 -13.3 -18.7 -10.8 2.1 
fractured porosity 24 -14.3 -13.8 -20.6 -7.5 4.0 
fractured  and karstic porosity 30 -12.2 -12.9 -13.8 -9.2 1.4 
karstic and fractured  porosity 74 -10.5 -12.2 -15.2 -0.7 4.2 
mixed porosity 6 -11.7 -12.5 -13.8 -9.0 2.1 
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Table: Groundwater δ13C-DIC value according to prevailing CORINE Land Cover type 
CORINE Land Cover class n X Md Min Max S 

bare rocks  8 -3.4 -3.4 -4.8 -2.2 1.0 

moors and heathland 2 -1.0 -1.0 -1.3 -0.7 0.4 

natural grasslands 2 -11.5 -11.5 -12.3 -10.8 1.0 

coniferous forest  20 -13.4 -13.0 -20.6 -3.2 4.5 

broad-leaved forest 44 -12.1 -12.6 -17.7 -2.4 3.0 

mixed forest 55 -12.3 -12.9 -20.5 -3.1 3.0 

non-irrigated arable land 10 -14.5 -14.7 -18.0 -10.8 2.8 

complex cultivation patterns 18 -13.4 -13.3 -15.8 -12.3 0.9 
land principally occupied by 
agriculture, with significant areas of 
natural vegetation 

10 -13.4 -13.2 -14.7 -12.4 0.7 

industrial or commercial units 2 -12.7 -12.7 -13.6 -11.7 1.3 
 
Table: Groundwater δ13C-DIC value according to prevailing Actual agricultural and forest land 
usage type 
Actual agricultural and forest land 
usage class n X Md Min Max S 

forest 135 -11.7 -12.6 -20.6 -0.7 4.0 
areas of less intense use of nutrients 
and plant protection products 18 -13.7 -13.5 -17.3 -11.1 1.5 

areas of intense use of nutrients and 
plant protection products 16 -14.0 -13.4 -18.0 -10.8 2.2 

urban areas 2 -12.7 -12.7 -13.6 -11.7 1.3 
 
Table: Groundwater δ13C-DIC according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 -13.9 -13.2 -18.7 -11.7 1.8 
borehole 10 -13.1 -12.3 -18.0 -9.9 2.8 
private well 8 -13.0 -13.0 -14.7 -10.8 1.2 
spring capture 44 -12.9 -13.2 -20.5 -2.4 3.7 

spring 58 -11.8 -12.6 -20.6 -2.2 3.4 

surface water 18 -7.1 -7.8 -13.0 -0.7 4.3 
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Si in Slovenian groundwaters 
 
Table: Groundwater Si concentration according to major rock type  
Major rock type n X Md Min Max S 

clastic sedimentary rocks 52 6.25 5.18 2.60 13.44 3.00 

carbonate rocks 110 1.36 1.14 0.17 4.34 0.94 

igneous and metamorphic rocks 12 6.70 6.39 4.70 8.94 1.52 
 
Table: Groundwater Si concentration according to prevailing lithological unit 
Lithological unit n X Md Min Max S 

flysch rocks 6 5.16 4.60 3.90 7.08 1.44 

clay 2 10.81 10.81 10.17 11.46 0.91 

gravel and sand 26 5.45 4.41 2.60 10.81 2.62 

gravel, sand and clay 12 8.54 8.05 4.31 13.44 3.48 

shale and sandstone 6 4.69 4.70 3.63 5.46 0.70 

limestone prevailing 74 1.20 1.05 0.17 3.86 0.81 

dolomite prevailing 30 1.30 1.18 0.56 3.72 0.73 

carbonates with clastics 6 3.55 3.45 2.88 4.34 0.59 

igneous rocks 8 6.05 5.75 4.70 7.98 1.23 

metamorphic rocks 4 7.99 8.38 6.28 8.94 1.26 
 
Table: Groundwater Si concentration according to prevailing lithostratigraphic unit 
Lithostratigraphic unit n X Md Min Max S 

old Paleozoic rocks 4 7.99 8.38 6.28 8.94 1.26 

Carboniferous-Permian beds 4 4.47 4.40 3.63 5.46 0.76 

Permian Val Gardena layers 2 5.12 5.12 4.86 5.38 0.36 

Ladinian igneous rocks 2 4.94 4.94 4.70 5.19 0.35 

Triassic carbonates 70 1.28 1.11 0.17 4.34 0.99 

Jurassic carbonates 8 1.30 0.74 0.52 3.25 1.15 

Cretaceous carbonates 28 1.34 1.17 0.72 2.29 0.46 

Eocene flysch rocks 6 5.16 4.60 3.90 7.08 1.44 

Oligocene igneous rocks 6 6.42 6.26 4.93 7.98 1.19 

Oligocene clay ˝sivica˝ 2 10.81 10.81 10.17 11.46 0.91 

Miocene Lithothamnium limestone 4 2.91 2.98 1.82 3.86 1.08 

Miocene clastics 4 5.76 5.84 4.31 7.04 1.42 

Pliocene clastics 8 9.93 11.00 4.61 13.44 3.39 
Quaternary  clastics (medium- and 
coarse-grained) 26 5.45 4.41 2.60 10.81 2.62 

 
Table: Groundwater Si concentration according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 40 6.65 5.42 2.60 13.44 3.28 

fractured porosity 24 5.81 5.42 3.63 8.94 1.58 

fractured  and karstic porosity 30 1.30 1.18 0.56 3.72 0.73 

karstic and fractured  porosity 74 1.20 1.05 0.17 3.86 0.81 

mixed porosity 6 3.55 3.45 2.88 4.34 0.59 
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Dissolution of SiO2 
 
TITLE SiO2 solubility (wateqf4.dat) 
 
SOLUTION 1 
pH 7  
temp 10.0  
 
EQUILIBRIUM_PHASES 1  
quartz 0.0 10.0 
CO2(g) -3.456 #0.035 Vol.% 
 
End 
 
 
Table: Groundwater Si concentration according to prevailing CORINE Land Cover type 
CORINE Land Cover class n X Md Min Max S 

bare rocks  8 0.49 0.23 0.17 1.29 0.48 

moors and heathland 2 0.24 0.24 0.23 0.26 0.03 

natural grasslands 2 1.09 1.09 1.04 1.14 0.07 

coniferous forest  2 3.90 3.99 0.26 7.98 2.75 

broad-leaved forest 44 2.33 1.65 0.29 10.81 2.27 

mixed forest 56 2.89 1.26 0.23 13.44 3.39 

non-irrigated arable land 10 6.32 6.85 2.60 10.55 2.87 

complex cultivation patterns 18 4.25 3.63 0.75 11.46 2.64 
land principally occupied by 
agriculture, with significant areas of 
natural vegetation 

10 4.04 4.59 1.45 7.04 2.16 

industrial or commercial units 2 2.84 2.84 2.80 2.88 0.06 
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A = bare rocks (n=8) 
B = moors and heathland (n=2) 
C= natural grasslands (n=2) 
D = coniferous forest (n=20) 
E = broad-leaved forest (n=45) 
F = mixed forest (n=51) 
G = non-irrigated arable land 
(n=10) 
H = complex cultivation 
patterns (n=18) 
I = land principally occupied by 
agriculture, with significant 
areas of natural vegetation 
(n=10) 
J = industrial or commercial 
units (n=2) 

Figure: Box and whisker plot for groundwater Si concentration according to prevailing CORINE 
Land Cover type 
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Table: Groundwater Si concentration according to prevailing Actual agricultural and forest land 
usage type 
Actual agricultural and forest land usage 
class 

n X Md Min Max S 

forest 136 2.62 1.33 0.17 13.44 2.83 
areas of less intense use of nutrients and 
plant protection products 18 4.55 4.50 0.75 11.46 2.94 

areas of intense use of nutrients and 
plant protection products 16 5.71 4.82 2.98 10.55 2.35 

urban areas 2 2.84 2.84 2.80 2.88 0.06 
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A = forest (n=136) 
B = areas of less intense use of 
nutrients and plant protection 
products (n=18) 
C = areas of intense use of 
nutrients and plant protection 
products (n=16) 
D = urban areas (n=2) 
 

Figure: Box and whisker plot for groundwater Si concentration according to prevailing Actual 
agricultural and forest land usage type 
 
Table: Groundwater Si concentration according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 36 4.672 3.079 0.602 13.439 4.136 

borehole 10 4.255 2.682 1.837 10.548 3.090 

private well 8 5.796 5.635 4.305 7.588 1.283 

spring capture 44 3.833 3.767 0.287 11.458 3.012 

spring 58 1.649 1.157 0.205 6.500 1.395 

surface water 18 1.839 1.070 0.170 4.969 1.794 
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Na+ in Slovenian groundwaters 
 
Table: Groundwater Na+ concentration according to major rock  
Major rock type class n X Md Min Max S 

clastic sedimentary rocks 53 8.7 6.1 1.9 36.0 7.5 

carbonate rocks 110 1.4 1.2 0.1 5.8 1.1 

igneous and metamorphic rocks 12 2.9 2.5 2.3 5.0 0.9 
 
Table: Groundwater Na+ concentration according to prevailing lithological unit 
Lithological class n X Md Min Max S 

flysch rocks 7 8.5 6.2 5.2 16.0 4.8 

clay 2 32.0 32.0 28.0 36.0 5.7 

gravel and sand 26 9.4 6.8 3.0 24.0 6.7 

gravel, sand and clay 11 6.7 6.1 1.9 17.0 4.4 

shale and sandstone 7 2.6 2.8 1.9 3.1 0.5 

limestone prevailing 74 1.4 1.1 0.1 5.8 1.2 

dolomite prevailing 30 1.3 1.2 0.3 4.3 0.9 

carbonates with clastics 6 1.9 2.0 1.6 2.2 0.2 

igneous rocks 8 3.0 2.5 2.3 5.0 1.1 

metamorphic rocks 4 2.6 2.6 2.3 2.9 0.3 
 
Table: Groundwater Na+ concentration according to prevailing lithostratigraphic unit 
Lithostratigraphic class n X Md Min Max S 

old Paleozoic rocks 4 2.6 2.6 2.3 2.9 0.3 

Carboniferous-Permian beds   5 2.5 2.8 1.9 3.1 0.6 

Permian Val Gardena layers 2 2.7 2.7 2.4 2.9 0.4 

Ladinian igneous rocks 2 2.7 2.7 2.6 2.7 0.1 

Triassic carbonates 70 1.2 0.9 0.1 4.6 1.1 

Jurassic carbonates 8 1.3 1.0 0.9 2.6 0.7 

Cretaceous carbonates 28 1.9 1.6 0.7 5.8 1.2 

Eocene flysch rocks 7 8.5 6.2 5.2 16.0 4.8 

Oligocene igneous rocks 6 3.2 2.4 2.3 5.0 1.2 

Oligocene clay ˝sivica˝ 2 32.0 32.0 28.0 36.0 5.7 

Miocene Lithothamnium limestone 4 2.1 2.0 1.4 2.9 0.7 

Miocene clastics 4 10.3 10.0 4.4 17.0 5.4 

Pliocene clastics 7 4.7 5.1 1.9 6.5 2.0 
Quaternary  clastics (medium- and 
coarse-grained) 26 9.4 6.8 3.0 24.0 6.7 

 
Table: Groundwater Na+ concentration according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 9.8 6.5 1.9 36.0 8.0 

fractured porosity 26 4.3 2.9 1.9 16.0 3.6 

fractured  and karstic porosity 30 1.3 1.2 0.3 4.3 0.9 

karstic and fractured  porosity 74 1.4 1.1 0.1 5.8 1.2 
mixed porosity (karstic, fractured, 
intergranular) 6 1.9 2.0 1.6 2.2 0.2 
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Table: Groundwater Na+ concentration according to prevailing CORINE Land Cover type 
CLC class n X Md Min Max S 

bare rocks 8 0.5 0.3 0.2 1.6 0.6 

moors and heathland 2 0.3 0.3 0.3 0.3 0.0 

natural grasslands 2 1.3 1.3 1.3 1.3 0.0 

coniferous forest 20 2.5 2.4 0.3 5.6 1.6 

broad-leaved forest 45 2.6 1.8 0.3 12.0 2.7 

mixed forest 56 2.3 1.5 0.1 16.0 3.0 

non-irrigated arable land 10 12.6 8.1 3.4 24.0 9.3 

complex cultivation patterns 18 8.7 4.5 1.2 36.0 9.5 
land principally occupied by agriculture, 
with significant areas of natural 
vegetation 

10 3.8 2.7 1.4 7.9 2.7 

industrial or commercial units 2 9.5 9.5 3.0 16.0 9.2 
 
Table: Groundwater Na+ concentration according to prevailing Actual agricultural and forest 
land usage type 
Land use type class  n X Md Min Max S 

forest 137 2.2 1.5 0.1 16.0 2.6 
areas of less intense use of nutrients 
and plant protection products 18 8.0 4.4 1.5 36.0 9.7 

areas of intense use of nutrients and 
plant protection products 16 10.8 7.6 3.4 24.0 7.7 

urban areas 2 9.5 9.5 3.0 16.0 9.2 
 
Table: Groundwater Na+ concentration according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 4.9 2.7 0.7 24.0 5.7 

borehole 10 6.0 5.8 1.4 11.0 3.1 

private well 8 12.9 10.0 4.4 24.0 7.6 

spring capture 44 3.8 2.0 0.2 36.0 7.0 

spring 58 1.8 1.6 0.1 6.5 1.4 

surface water 20 2.2 1.2 0.2 6.2 2.3 
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Cl- in Slovenian groundwaters 
 
Table: Groundwater Cl- concentration according to major rock type 
Major rock type n X Md Min Max S 

clastic sedimentary rocks 53 11.50 7.79 0.99 36.70 9.88 

carbonate rocks 110 2.28 1.69 0.12 9.12 2.00 

igneous and metamorphic rocks 12 1.18 0.38 0.38 4.26 1.41 
 
Table: Groundwater Cl- concentration according to prevailing lithological unit 
Lithological unit n X Md Min Max S 

flysch rocks 7 10.07 3.70 3.39 26.30 10.92 

clay 2 7.31 7.31 7.16 7.45 0.21 

gravel and sand 26 17.17 12.95 6.00 36.70 9.36 

gravel, sand and clay 11 6.06 4.87 1.28 19.60 5.33 

shale and sandstone 7 1.65 1.78 0.99 2.38 0.56 

limestone prevailing 74 2.17 1.69 0.12 9.12 2.08 

dolomite prevailing 30 2.52 2.11 0.38 7.77 1.90 

carbonates with clastics 6 2.29 1.66 0.98 4.29 1.53 

igneous rocks 8 1.58 0.93 0.38 4.26 1.60 

metamorphic rocks 4 0.38 0.38 0.38 0.38 0.00 
 
Table: Groundwater Cl- concentration according to prevailing lithostratigraphic unit 
Lithostratigraphic unit n X Md Min Max S 

old Paleozoic rocks 4 0.38 0.38 0.38 0.38 0.00 

Carboniferous-Permian beds 5 1.71 1.96 0.99 2.38 0.65 

Permian Val Gardena layers 2 1.50 1.50 1.22 1.78 0.40 

Ladinian igneous rocks 2 4.04 4.04 3.81 4.26 0.32 

Triassic carbonates 70 2.06 1.46 0.12 9.12 2.11 

Jurassic carbonates 8 2.13 1.68 1.38 4.03 1.01 

Cretaceous carbonates 28 2.90 2.46 0.78 9.04 1.96 

Eocene flysch rocks 7 10.07 3.70 3.39 26.30 10.92 

Oligocene igneous rocks 6 0.76 0.38 0.38 1.55 0.59 

Oligocene clay ˝sivica˝ 2 7.31 7.31 7.16 7.45 0.21 

Miocene Lithothamnium limestone 4 2.06 1.98 1.36 2.91 0.76 

Miocene clastics 4 11.21 9.20 6.84 19.60 5.96 

Pliocene clastics 7 3.12 2.72 1.28 4.99 1.34 
Quaternary  clastics (medium- and coarse-
grained) 26 17.17 12.95 6.00 36.70 9.36 

 
Table: Groundwater Cl- concentration according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 13.53 11.30 1.28 36.70 9.61 

fractured porosity 26 3.70 1.67 0.38 26.30 6.72 

fractured  and karstic porosity 30 2.52 2.11 0.38 7.77 1.90 

karstic and fractured  porosity 74 2.17 1.69 0.12 9.12 2.08 
mixed porosity (karstic, fractured, 
intergranular) 6 2.29 1.66 0.98 4.29 1.53 
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Table: Groundwater Cl- concentration according to prevailing CORINE Land Cover type 
CORINE Land Cover class n X Md Min Max S 

bare rocks 8 0.52 0.38 0.12 1.51 0.53 

moors and heathland 2 0.38 0.38 0.38 0.38 0.00 

natural grasslands 2 2.35 2.35 2.34 2.35 0.01 

coniferous forest 20 2.47 0.96 0.38 12.00 3.41 

broad-leaved forest 45 3.04 2.13 0.38 11.40 2.63 

mixed forest 56 3.07 1.85 0.12 26.30 4.86 

non-irrigated arable land 10 21.16 26.15 6.00 36.70 12.04 

complex cultivation patterns 18 9.35 7.61 2.12 23.20 6.29 
land principally occupied by agriculture, with 
significant areas of natural vegetation 10 7.69 4.04 2.42 19.60 6.74 

industrial or commercial units 2 22.20 22.20 12.20 32.20 14.14 
 
Table: Groundwater Cl- concentration according to prevailing Actual agricultural and forest 
land usage type 
Actual agricultural and forest land usage 
class n X Md Min Max S 
forest 137 2.78 1.71 0.12 26.3 3.73 
areas of less intense use of nutrients and 
plant protection products  18 6.3 6.57 1.22 19.6 4.25 
areas of intense use of nutrients and plant 
protection products  16 20.58 20.2 8.97 36.7 8.89 
urban areas 2 22.2 22.2 12.2 32.2 14.14 
 
Table: Groundwater Cl- concentration according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 7.71 4.82 0.78 36.70 9.09 

borehole 10 13.42 9.00 2.13 28.30 10.24 

private well 8 16.80 15.80 6.84 30.80 8.81 

spring capture 44 3.09 1.57 0.38 26.30 5.37 

spring 58 2.83 2.13 0.12 13.80 2.88 

surface water 20 1.79 1.81 0.12 4.24 1.42 
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NO3
- in Slovenian groundwaters 

 
Table: Groundwater NO3

- concentration according to major rock type  
Major rock type class n X Md Min Max S 

clastic sedimentary rocks 53 22.06 15.98 0.33 92.56 24.58 

carbonate rocks 110 4.25 4.10 1.11 10.98 2.11 

igneous and metamorphic rocks 12 3.09 3.25 1.11 5.05 1.25 
 
Table: Groundwater NO3

- concentration according to prevailing lithological unit 
Lithological class n X Md Min Max S 

flysch rocks 7 8.71 4.65 1.11 25.51 9.87 

clay 2 11.18 11.18 10.36 12.00 1.16 

gravel and sand 26 36.50 24.62 11.64 92.56 25.52 

gravel, sand and clay 11 11.08 3.63 1.11 63.30 18.78 

shale and sandstone 7 2.11 2.43 0.33 3.98 1.30 

limestone prevailing 74 3.82 3.99 1.11 9.26 1.95 

dolomite prevailing 30 5.19 5.36 1.11 10.98 2.26 

carbonates with clastics 6 4.84 4.09 3.14 7.53 1.95 

igneous rocks 8 3.21 3.36 1.11 5.05 1.48 

metamorphic rocks 4 2.84 2.72 2.26 3.67 0.71 
 
Table: Groundwater NO3

- concentration according to prevailing lithostratigraphic unit 
Lithostratigraphic unit n X Md Min Max S 

old Paleozoic rocks 4 2.84 2.72 2.26 3.67 0.71 

Carboniferous-Permian beds 5 2.09 2.43 0.33 3.98 1.42 

Permian Val Gardena layers 2 2.15 2.15 1.11 3.19 1.47 

Ladinian igneous rocks 2 4.96 4.96 4.87 5.05 0.13 

Triassic carbonates 70 4.16 4.07 1.11 10.98 2.23 

Jurassic carbonates 8 5.10 4.98 3.23 7.17 1.32 

Cretaceous carbonates 28 4.26 4.03 1.11 9.26 1.96 

Eocene flysch rocks 7 8.71 4.65 1.11 25.51 9.87 

Oligocene igneous rocks 6 2.63 3.19 1.11 3.81 1.21 

Oligocene clay ˝sivica˝ 2 11.18 11.18 10.36 12.00 1.16 

Miocene Lithothamnium limestone 4 4.09 4.32 1.11 6.60 2.67 

Miocene clastics 4 25.13 16.80 3.63 63.30 27.40 

Pliocene clastics 7 3.05 2.57 1.11 6.46 2.36 
Quaternary  clastics (medium- and 
coarse-grained) 26 36.50 24.62 11.64 92.56 25.52 

 
Table: Groundwater NO3

- concentration according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 28.03 22.13 1.11 92.56 25.85 

fractured porosity 26 4.34 3.19 0.33 25.51 5.65 

fractured  and karstic porosity 30 5.19 5.36 1.11 10.98 2.26 

karstic and fractured  porosity 74 3.82 3.99 1.11 9.26 1.95 
mixed porosity (karstic, fractured, 
intergranular) 6 4.84 4.09 3.14 7.53 1.95 
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Table: Groundwater NO3
- concentration according to prevailing CORINE Land Cover type 

CORINE Land Cover class n X Md Min Max S 

bare rocks 8 1.51 1.28 1.11 2.39 0.53 

moors and heathland 2 1.11 1.11 1.11 1.11 0.00 

natural grasslands 2 3.76 3.76 3.63 3.90 0.19 

coniferous forest 20 7.32 3.25 1.11 46.50 13.07 

broad-leaved forest 45 4.37 3.98 1.11 15.98 3.07 

mixed forest 56 5.03 4.52 0.33 25.51 4.12 

non-irrigated arable land 10 46.09 25.86 16.56 92.56 31.53 

Complex cultivation patterns 18 13.31 11.00 3.63 28.07 8.43 
land principally occupied by agriculture, with 
significant areas of natural vegetation 10 27.23 6.33 4.87 81.04 30.91 

industrial or commercial units 2 24.42 24.42 24.05 24.80 0.53 
 
Table: Groundwater NO3

- concentration according to prevailing Actual agricultural and forest 
land usage type 
Actual agricultural and forest land usage class n X Md Min Max S 

forest 137 4.96 3.94 0.33 46.50 5.97 
areas of less intense use of nutrients and 
plant protection products 18 12.36 8.01 1.11 63.30 14.28 

areas of intense use of nutrients and plant 
protection products  16 44.86 26.99 20.94 92.56 28.24 

urban areas 2 24.42 24.42 24.05 24.80 0.53 
 
Table: Groundwater NO3

- concentration according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 12.33 6.73 1.11 46.50 12.17 

borehole 10 24.81 18.19 1.11 75.26 26.42 

private well 8 53.92 65.31 3.63 92.56 36.39 

spring capture 44 4.97 3.83 1.11 25.51 4.56 

spring 58 4.93 4.41 0.33 22.00 3.89 

surface water 20 2.90 2.48 1.11 6.60 1.81 
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δ15Ntot in Slovenian groundwaters 
 
Table: Groundwater δ15Ntot values according to prevailing CORINE Land Cover type 
CORINE Land Cover class n X Md Min Max S 

bare rocks 7 -0.41 -0.70 -2.30 1.90 1.34 

moors and heathland 2 -0.30 -0.30 -2.20 1.60 2.69 

natural grasslands 2 0.20 0.20 0.00 0.40 0.28 

coniferous forest 11 1.93 1.60 -2.80 6.70 3.20 

broad-leaved forest 28 3.44 2.90 -2.04 15.10 3.76 

mixed forest 54 3.90 3.00 -1.50 16.90 3.62 

non-irrigated arable land 8 10.45 9.55 7.10 14.20 3.19 

complex cultivation patterns 11 7.37 6.50 4.80 18.60 3.89 
land principally occupied by 
agriculture, with significant areas of 
natural vegetation 

6 6.80 7.15 3.80 8.20 1.71 

industrial or commercial units 2 8.25 8.25 7.50 9.00 1.06 
 
Table: Groundwater δ15Ntot values according to prevailing Actual agricultural and forest land 
usage type 
Land cover class n µ Md Min Max s 

forest 110 3.26 2.65 -2.80 16.90 3.61 
areas of less intense use of nutrients 
and plant protection products 4 7.83 8.05 6.50 8.70 0.94 

areas of intense use of nutrients and 
plant protection products 15 9.35 7.60 5.50 18.60 3.99 

urban areas 2 8.25 8.25 7.50 9.00 1.06 
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K+ in Slovenian groundwaters 
 
Table: Groundwater K+ concentration according to major rock type  
Major rock type n X Md Min Max S 

clastic sedimentary rocks 53 1.75 0.98 0.13 12.00 2.59 

carbonate rocks 110 0.41 0.24 0.04 3.60 0.54 

igneous and metamorphic rocks 12 0.54 0.52 0.37 0.73 0.10 
 
Table: Groundwater K+ concentration according to prevailing lithological unit 
Lithological class n X Md Min Max S 

flysch rocks 7 2.01 1.30 0.72 4.60 1.59 

clay 2 1.04 1.04 0.78 1.30 0.37 

gravel and sand 26 2.39 1.05 0.37 12.00 3.47 

gravel, sand and clay 11 1.04 0.98 0.42 2.20 0.50 

shale and sandstone 7 0.43 0.44 0.13 0.63 0.18 

limestone prevailing 74 0.29 0.13 0.04 1.20 0.26 

dolomite prevailing 30 0.66 0.32 0.13 3.60 0.90 

carbonates with clastics 6 0.61 0.60 0.52 0.75 0.08 

igneous rocks 8 0.55 0.53 0.37 0.73 0.12 

metamorphic rocks 4 0.51 0.52 0.49 0.52 0.01 
 
Table: Groundwater K+ concentration according to prevailing lithostratigraphic unit 
Lithostratigraphic class n X Md Min Max S 

Old Paleozoic rocks 4 0.51 0.52 0.49 0.52 0.01 

Carboniferous-Permian beds 5 0.51 0.54 0.33 0.63 0.12 

Permian Val Gardena layers 2 0.23 0.23 0.13 0.34 0.15 

Ladinian igneous rocks 2 0.46 0.46 0.37 0.55 0.13 

Triassic carbonates 70 0.44 0.25 0.04 3.60 0.64 

Jurassic carbonates 8 0.41 0.15 0.13 1.20 0.49 

Cretaceous carbonates 28 0.32 0.28 0.13 0.84 0.21 

Eocene flysch rocks 7 2.01 1.30 0.72 4.60 1.59 

Oligocene igneous rocks 6 0.58 0.53 0.47 0.73 0.12 

Oligocene clay ˝sivica˝ 2 1.04 1.04 0.78 1.30 0.37 

Miocene Lithothamnium limestone 4 0.42 0.39 0.13 0.75 0.34 

Miocene clastics 4 1.53 1.40 1.10 2.20 0.50 

Pliocene clastics 7 0.76 0.76 0.42 1.00 0.21 
Quaternary  clastics (medium- and 
coarse-grained) 26 2.39 1.05 0.37 12.00 3.47 

 
Table: Groundwater K+ concentration according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 1.94 1.00 0.37 12.00 2.90 

fractured porosity 26 0.90 0.55 0.13 4.60 1.05 

fractured  and karstic porosity 30 0.66 0.32 0.13 3.60 0.90 

karstic and fractured  porosity 74 0.29 0.13 0.04 1.20 0.26 
mixed porosity (karstic, fractured, 
intergranular) 6 0.61 0.60 0.52 0.75 0.08 
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Table: Groundwater K+ concentration according to prevailing CORINE Land Cover type 
CLC class n X Md Min Max S 

bare rocks 8 0.12 0.13 0.04 0.35 0.10 

moors and heathland 2 0.13 0.13 0.13 0.13 0.00 

natural grasslands 2 0.13 0.13 0.13 0.13 0.00 

coniferous forest 20 0.47 0.50 0.11 0.84 0.25 

broad-leaved forest 45 0.39 0.30 0.13 1.40 0.33 

mixed forest 56 0.56 0.42 0.04 4.60 0.80 

non-irrigated arable land 10 4.87 1.55 1.00 12.00 4.69 

complex cultivation patterns 18 1.10 0.77 0.13 3.60 0.88 
land principally occupied by agriculture, 
with significant areas of natural 
vegetation 

10 1.24 1.05 0.37 3.10 0.90 

industrial or commercial units 2 0.96 0.96 0.52 1.40 0.62 
 
Table: Groundwater K+ concentration according to prevailing Actual agricultural and forest 
land usage type 
land use type class  n X Md Min Max S 

forest 137 0.47 0.35 0.04 4.60 0.57 
areas of less intense use of nutrients 
and plant protection products 18 1.27 1.15 0.13 3.60 1.03 

areas of intense use of nutrients and 
plant protection products 16 3.37 1.20 0.37 12.00 4.16 

urban areas 2 0.96 0.96 0.52 1.40 0.62 
 
Table: Groundwater K+ concentration according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 1.25 0.58 0.13 10.00 2.18 

borehole 10 1.11 1.25 0.13 2.00 0.67 

private well 8 3.76 1.40 1.00 12.00 4.49 

spring capture 44 0.62 0.39 0.12 4.60 0.98 

spring 58 0.38 0.31 0.04 1.20 0.28 

surface water 20 0.49 0.37 0.04 1.40 0.45 
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   SO4
2- in Slovenian groundwaters 

 
    Table: Groundwater SO4

2- concentration according to major rock type 
Major rock type n X Md Min Max S 
clastic sedimentary rocks 53 19.57 13.90 1.58 67. 15.77 
carbonate rocks 110 5.98 4.37 0.75 35.70 5.29 
igneous and metamorphic 
rocks 

12 5.31 5.18 2.11 10.70 2.71 

 
    Table: Groundwater SO4

2- concentration according to prevailing lithological unit 
Rock type n X Md Min Max S 
flysch rocks 7 23.90 17.50 10.20 48.90 16.47 
clay 2 27.50 27.50 25.50 29.50 2.82 
gravel and sand 26 18.44 19.90 3.91 42.10 11.55 
gravel, sand and clay 11 25.31 27.80 1.58 67.40 25.23 
shale and sandstone 7 8.19 7.15 6.31 13.10 2.62 
limestone prevailing 74 5.49 4.28 0.75 35.70 5.34 
dolomite prevailing 30 6.88 4.41 1.69 21.9 5.35 
carbonates with clastics 6 7.58 5.90 4.03 12.60 3.95 
igneous rocks 8 6.05 5.41 3.05 10.70 2.83 
metamorphic rocks 4 3.85 3.74 2.11 5.82 2.00 

 
    Table: Groundwater SO4

2- concentration according to prevailing lithostratigraphic unit 
Lithostratigraphic unit n X Md Min Max S 
old Paleozoic rocks 4 3.85 3.74 2.11 5.82 2.00 
Carboniferous-Permian beds  5 8.93 7.59 6.31 13.1 2.81 
Permian Val Gardena layers  2 6.34 6.34 6.33 6.36 0.02 
Ladinian igneous rocks  2 4.99 4.99 4.97 5.02 0.03 
Triassic carbonates  70 6.06 4.17 0.75 35.70 6.15 
Jurassic carbonates  8 4.19 3.62 3.18 6.18 1.18 
Cretaceous carbonates  28 5.19 4.61 3.23 10.10 1.96 
Eocene flysch rocks  7 23.90 17.50 10.20 48.90 16.47 
Oligocene igneous rocks 6 6.40 5.88 3.05 10.70 3.26 
Oligocene clay ˝sivica˝ 2 27.50 27.50 25.50 29.50 2.82 
Miocene Lithothamnium 
limestone  

4 13.95 13.80 10.10 18.10 4.13 

Miocene clastics  4 51.77 55.95 27.80 67.40 17.57 
Pliocene clastics  7 10.20 3.46 1.58 29.70 13.17 
Quaternary  clastics  
(medium- and coarse-grained)  

26 18.44 13.90 3.91 42.10 11.55 

 
    Table: Groundwater SO4

2- concentration according to prevailing aquifer porosity type 
Aquifer porosity type n X Md Min Max S 

intergranular porosity 39 20.85 15.50 1.58 67.40 16.36 
fractured porosity 26 11.09 6.76 2.11 48.90 11.59 
fractured  and karstic porosity 30 6.88 4.41 1.69 21.90 5.35 
karstic and fractured  porosity 74 5.50 4.28 0.75 35.70 5.35 
mixed porosity (karstic, 
fractured, intergranular) 6 7.59 5.90 4.03 12.60 3.96 
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   Table: Groundwater SO4
2- concentration according to prevailing CORINE Land Cover type 

CORINE Land Cover class n X Md Min Max S 
bare rocks 8 8.47 1.39 0.75 35.70 13.85 
moors and heathland 2 1.23 1.23 0.75 1.72 0.68 
natural grasslands 2 3.95 3.95 3.75 4.16 0.28 
coniferous forest 20 6.59 4.44 0.75 25.20 6.73 
broad-leaved forest 45 6.72 5.11 0.75 18.10 4.36 
mixed forest 56 8.58 4.79 1.42 48.90 9.81 
non-irrigated arable land 10 25.94 28.85 8.59 42.10 13.45 
complex cultivation patterns 18 16.40 8.94 3.00 67.40 18.94 
land principally occupied by agriculture, 
with significant areas of natural 
vegetation 

10 15.95 10.60 4.97 49.90 13.60 

industrial or commercial units 2 24.10 24.10 23.50 24.70 0.84 
 

Table: Groundwater SO4
2- concentration according to prevailing Actual agricultural and   

forest land usage type 
Actual agricultural and forest land 
usage class n X Md Min Max S 

forest 137 7.44 4.60 0.75 48.90 7.96 
areas of less intense use of nutrients 
and plant protection products 

18 19.98 10.04 4.36 67.40 20.13 

areas of intense use of nutrients and 
plant protection product 

16 20.51 14.70 7.88 42.10 12.84 

urban areas 2 24.10 24.10 23.50 24.70 0.84 
 
    Table: Groundwater SO4

2- concentration according to sampling object type 
Sampling object type n X Md Min Max S 

pumping station 35 10.69 5.81 1.58 42.10 10.48 

borehole 10 16.08 10.85 6.99 39.50 12.21 

private well 8 36.98 29.30 15.50 67.40 20.23 

spring capture 44 10.37 5.92 0.75 48.90 11.05 

spring 58 5.93 4.37 1.26 35.70 5.47 

surface water 20 6.47 4.88 0.75 18.10 5.86 
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Comparison of typical groundwater values according to 
lithological, lithostratigraphic, CORINE Land Cover, and Actual 

agricultural and forest land usage classification 

 

• 14A: Typical groundwater geochemistry according to lithological and lithostratigraphic 
classification 
 

• 14B: Typical groundwater geochemistry according to CORINE Land Cover and Actual 
agricultural and forest land usage classification 
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Table: Typical groundwater values according to lithological classification
n

Lithological unit X S X S X EC X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S
flysch rocks 7 14.0 3.0 7.85 0.31 466 175 -7.36 0.59 -45.3 4.2 13.6 2.9 -11.7 1.0 5.5 3.2 5.50 0.77 88 40 7.1 2.5 8.5 4.8 2.01 1.59 0.01 0.00 287 101 10.07 10.92 8.71 9.87 23.90 16.48 5.16 1.44 0.25 0.00 32.58 34.44 25.42 27.33 0.37 0.19 5.00 0.00 3.31 4.57
clay 2 12.3 4.5 7.85 0.07 317 18 -9.72 0.59 -63.3 0.7 14.4 5.4 -14.9 1.3 4.79 0.91 37 1 5.8 0.1 32.0 5.7 1.04 0.37 0.01 0.00 168 12 7.31 0.21 11.18 1.16 27.50 2.83 10.81 0.91 0.38 0.18 31.50 3.54 16.50 3.54 0.25 0.00 10.50 7.78 0.21 0.13
gravel and sand 26 12.8 1.5 7.25 0.41 548 154 -8.65 0.61 -59.1 5.2 10.1 1.5 -13.8 2.2 8.8 3.5 6.61 1.63 85 25 18.8 5.3 9.4 6.7 2.39 3.47 0.01 0.00 293 92 17.17 9.36 36.50 25.52 18.44 11.56 5.45 2.62 0.29 0.11 31.10 37.11 24.42 9.05 3.53 9.59 15.31 18.44 0.60 1.04
gravel, sand and clay 12 14.0 2.1 7.08 0.19 569 214 -9.76 0.62 -67.0 4.6 11.1 1.6 -14.1 2.0 5.5 3.3 4.83 4.06 90 46 24.5 10.7 6.7 4.4 1.04 0.50 0.02 0.01 352 139 6.06 5.33 11.08 18.78 25.32 25.23 8.54 3.48 0.35 0.23 23.88 40.00 18.92 4.40 0.66 0.44 41.46 35.42 5.81 7.40
shale and sandstone 7 12.0 3.7 7.67 0.19 124 53 -9.14 0.53 -60.5 4.1 12.6 1.1 -11.4 4.1 6.4 2.6 6.03 0.90 15 8 5.1 4.0 2.6 0.5 0.43 0.18 0.01 0.00 67 44 1.65 0.56 2.11 1.30 8.19 2.62 4.69 0.70 0.29 0.10 4.58 2.40 12.17 2.93 0.25 0.00 5.00 0.00 0.74 0.21
limestone prevailing 74 9.3 2.3 7.76 0.25 322 97 -9.32 1.02 -61.5 8.3 13.1 1.9 -10.5 4.2 2.6 3.7 6.22 1.28 58 20 7.9 5.0 1.4 1.2 0.29 0.26 0.01 0.00 215 73 2.17 2.08 3.82 1.95 5.50 5.35 1.20 0.81 0.25 0.00 3.49 2.31 7.55 4.79 0.44 0.25 12.59 18.88 0.29 0.40
dolomite prevailing 30 10.4 2.7 7.68 0.16 404 101 -9.41 0.52 -62.8 4.4 12.4 1.0 -12.2 1.4 4.6 3.4 5.92 1.42 55 11 23.8 10.0 1.3 0.9 0.66 0.90 0.01 0.00 291 85 2.52 1.90 5.19 2.26 6.88 5.35 1.30 0.73 0.25 0.00 3.05 1.29 7.93 2.40 0.47 0.26 13.53 17.53 0.27 0.19
carbonates with clastics 6 10.7 1.1 7.66 0.18 350 131 -9.40 0.41 -63.8 4.0 11.5 1.2 -11.7 2.1 2.5 0.5 7.48 2.15 56 13 16.0 14.1 1.9 0.2 0.61 0.08 0.01 0.00 255 105 2.29 1.53 4.84 1.95 7.59 3.96 3.55 0.59 0.40 0.23 2.50 0.00 8.42 4.96 0.25 0.00 13.50 20.82 0.18 0.10
igneous rocks 8 11.4 3.3 7.59 0.56 102 62 -9.71 0.72 -65.0 5.2 12.7 1.4 -16.6 3.3 6.09 0.84 16 12 1.6 0.8 3.0 1.1 0.55 0.12 0.01 0.00 61 36 1.58 1.60 3.21 1.48 6.05 2.84 6.05 1.23 0.25 0.00 3.25 1.41 5.75 3.75 0.28 0.09 5.00 0.00 0.29 0.15
metamorphic rocks 4 6.5 0.9 7.11 0.48 87 57 -10.77 0.14 -71.1 1.0 15.0 1.4 -18.2 2.3 -0.1 0.6 6.65 0.42 11 11 1.0 0.0 2.6 0.3 0.51 0.01 0.01 0.00 58 38 0.38 0.00 2.84 0.71 3.85 2.00 7.99 1.26 0.50 0.35 2.50 0.00 10.00 1.83 0.68 0.50 5.00 0.00 0.09 0.06

Table: Typical groundwater values according to lithostratigraphic classification

Lithostratigraphic unit n
X S X S X EC X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S

old Paleozoic rocks 4 6.5 0.9 7.11 0.48 87 57 -10.77 0.14 -71.1 1.0 15.0 1.4 -18.2 2.3 -0.1 0.6 6.65 0.42 11 11 1.0 0.0 2.6 0.3 0.51 0.01 0.01 0.00 58 38 0.38 0.00 2.84 0.71 3.85 2.00 7.99 1.26 0.50 0.35 2.50 0.00 10.00 1.83 0.68 0.50 5.00 0.00 0.09 0.06
Carboniferous-Permian beds 5 11.4 4.4 7.74 0.13 95 21 -8.81 0.12 -58.0 1.5 12.5 1.3 -8.8 1.1 6.4 2.6 5.79 0.97 11 5 2.8 0.6 2.5 0.6 0.51 0.12 0.01 0.00 43 11 1.71 0.65 2.09 1.42 8.93 2.81 4.47 0.76 0.31 0.13 3.88 2.75 13.25 2.63 0.25 0.00 5.00 0.00 0.85 0.15
Permian Val Gardena layers 2 13.6 0.6 7.50 0.28 195 36 -9.82 0.09 -65.6 0.7 12.9 0.0 -16.5 1.2 6.52 0.70 26 5 10.8 1.8 2.7 0.4 0.23 0.15 0.01 0.00 130 22 1.50 0.40 2.15 1.47 6.35 0.02 5.12 0.36 0.25 0.00 6.00 0.00 10.00 2.83 0.25 0.00 5.00 0.00 0.53 0.09
Ladinian igneous rocks 2 9.9 0.3 7.75 0.07 170 13 -9.45 0.03 -62.5 0.1 13.2 0.3 -14.0 0.1 5.70 1.10 31 1 1.7 0.9 2.7 0.1 0.46 0.13 0.01 0.00 105 1 4.04 0.32 4.96 0.13 5.00 0.04 4.94 0.35 0.25 0.00 2.50 0.00 7.25 6.72 0.38 0.18 5.00 0.00 0.22 0.11
Triassic carbonates 70 9.2 2.6 7.79 0.23 331 119 -9.54 0.70 -63.5 5.5 12.8 1.5 -10.1 4.1 2.8 3.5 6.29 1.44 50 16 15.2 11.3 1.2 1.1 0.44 0.64 0.01 0.00 233 97 2.06 2.11 4.16 2.23 6.06 6.16 1.28 0.99 0.26 0.07 3.03 1.46 6.65 3.24 0.43 0.25 11.31 14.89 0.23 0.19
Jurassic carbonates 8 9.6 1.2 7.79 0.25 295 83 -9.10 0.72 -59.5 7.3 13.2 3.6 -11.3 2.7 1.8 2.4 6.12 1.17 58 20 5.6 2.2 1.3 0.7 0.41 0.49 0.01 0.00 202 63 2.13 1.01 5.10 1.32 4.19 1.19 1.30 1.15 0.25 0.00 3.88 2.60 7.56 2.41 0.39 0.21 6.50 4.24 0.19 0.21
Cretaceous carbonates 28 10.7 2.2 7.59 0.16 383 52 -8.85 1.13 -58.2 9.7 12.7 1.4 -13.1 1.4 4.1 4.3 6.03 1.46 71 10 8.2 5.8 1.9 1.2 0.32 0.21 0.01 0.00 256 53 2.90 1.96 4.26 1.96 5.19 1.70 1.34 0.46 0.25 0.00 3.84 2.86 10.43 5.72 0.49 0.24 19.11 27.18 0.44 0.57
Eocene flysch rocks 7 14.0 3.0 7.85 0.31 466 175 -7.36 0.59 -45.3 4.2 13.6 2.9 -11.7 1.0 5.5 3.2 5.50 0.77 88 40 7.1 2.5 8.5 4.8 2.01 1.59 0.01 0.00 287 101 10.07 10.92 8.71 9.87 23.90 16.48 5.16 1.44 0.25 0.00 32.58 34.44 25.42 27.33 0.37 0.19 5.00 0.00 3.31 4.57
Oligocene igneous rocks 6 11.9 3.7 7.53 0.66 79 53 -9.80 0.83 -65.8 5.9 12.6 1.6 -17.5 3.4 6.22 0.82 11 10 1.6 0.9 3.2 1.2 0.58 0.12 0.01 0.00 47 28 0.76 0.59 2.63 1.21 6.40 3.27 6.42 1.19 0.25 0.00 3.50 1.58 5.25 3.08 0.25 0.00 5.00 0.00 0.32 0.16
Oligocene clay "sivica" 2 12.3 4.5 7.85 0.07 317 18 -9.72 0.59 -63.3 0.7 14.4 5.4 -14.9 1.3 4.79 0.91 37 1 5.8 0.1 32.0 5.7 1.04 0.37 0.01 0.00 168 12 7.31 0.21 11.18 1.16 27.50 2.83 10.81 0.91 0.38 0.18 31.50 3.54 16.50 3.54 0.25 0.00 10.50 7.78 0.21 0.13
Miocene Lithothamnium  limestone 4 10.6 0.7 7.68 0.10 433 33 -10.13 0.27 -67.3 2.4 13.7 1.5 -12.5 0.5 6.0 3.1 6.31 0.80 73 4 15.5 3.1 2.1 0.7 0.42 0.34 0.01 0.00 277 7 2.06 0.76 4.09 2.67 13.95 4.14 2.91 1.08 0.25 0.00 3.63 2.25 7.38 3.35 0.25 0.00 10.00 6.63 0.12 0.06
Miocene clastics 4 16.0 1.3 6.98 0.05 766 121 -8.98 0.14 -61.0 0.6 10.8 1.2 -13.5 1.0 6.62 0.93 139 15 29.3 14.1 10.3 5.4 1.53 0.50 0.02 0.02 473 113 11.21 5.96 25.13 27.40 51.78 17.58 5.76 1.42 0.25 0.00 66.00 48.13 23.00 4.32 0.36 0.23 44.50 46.34 2.06 2.18
Pliocene clastics 8 13.0 1.6 7.14 0.22 456 168 -10.15 0.26 -69.9 1.5 11.3 1.8 -14.5 2.3 5.5 3.3 3.81 4.87 62 30 21.8 8.2 4.7 2.0 0.76 0.21 0.01 0.00 283 102 3.12 1.34 3.05 2.36 10.20 13.17 9.93 3.39 0.40 0.28 2.81 0.88 16.88 2.85 0.81 0.45 39.94 32.30 7.68 8.49
Quaternary clastics (medium- and coarse-grained) 26 12.8 1.5 7.25 0.41 548 154 -8.65 0.61 -59.1 5.2 10.1 1.5 -13.8 2.2 8.8 3.5 6.61 1.63 85 25 18.8 5.3 9.4 6.7 2.39 3.47 0.01 0.00 293 92 17.17 9.36 36.50 25.52 18.44 11.56 5.45 2.62 0.29 0.11 31.10 37.11 24.42 9.05 3.53 9.59 15.31 18.44 0.60 1.04

Br (µg/L) Cr (µg/L) Fe (µg/L) Mn (µg/L)Cl- (mg/L) NO3
- (mg/L) SO4

2- (mg/L) Si (mg/L) As (µg/L) B (µg/L)Ca2+ (mg/L) Mg2+ (mg/L) Na+ (mg/L) K+ (mg/L) NH4
+ (mg/L) HCO3

- (mg/L)

Mn (µg/L)

T (°C) pH EC (µS/cm) δ 18O (‰) δ 2H (‰) d-excess (‰) δ 13C-DIC (‰) δ 15Ntot (‰) 3H (TU)

Si (mg/L) As (µg/L) B (µg/L) Br (µg/L) Cr (µg/L) Fe (µg/L)K+ (mg/L) NH4
+ (mg/L) HCO3

- (mg/L) Cl- (mg/L) NO3
- (mg/L) SO4

2- (mg/L)Na+ (mg/L)T (°C) pH EC (µS/cm) δ 18O (‰) δ 2H (‰) d-excess (‰) δ 13C-DIC (‰) δ 15Ntot (‰) 3H (TU) Ca2+ (mg/L) Mg2+ (mg/L)
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Table: Typical groundwater values according to CORINE Land cover classification

n
X S X S X EC X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S

bare rocks 8 6.6 1.2 8.00 0.07 194 47 -9.87 0.71 -64.9 6.1 14.1 0.9 -3.4 1.0 -0.4 1.3 6.40 0.79 31 6 5.7 3.7 0.5 0.6 0.12 0.10 0.01 0.00 117 25 0.52 0.53 1.51 0.53 8.47 13.86 0.49 0.48 0.25 0.00 2.94 1.24 3.38 1.71 0.29 0.12 5.88 2.47 0.20 0.12
moors and heathland 2 10.4 8.09 0.06 156 5 -10.50 0.86 -71.3 5.2 12.7 1.7 -1.0 0.4 -0.3 2.7 5.87 0.51 26 1 4.7 0.5 0.3 0.0 0.13 0.00 0.01 0.00 117 15 0.38 0.00 1.11 0.00 1.24 0.69 0.24 0.03 0.25 0.00 2.50 0.00 2.50 0.00 0.25 0.00 5.00 0.00 0.07 0.07
natural grasslands 2 9.7 0.2 7.66 0.19 351 20 -8.05 0.04 -49.9 0.8 14.5 0.6 -11.5 1.0 0.2 0.3 3.39 1.67 61 3 8.8 0.3 1.3 0.0 0.13 0.00 0.01 0.00 234 23 2.35 0.01 3.76 0.19 3.96 0.29 1.09 0.07 0.25 0.00 2.50 0.00 10.50 3.54 0.25 0.00 21.50 23.33 0.38 0.26
coniferous forest 20 9.3 3.1 7.70 0.41 228 156 -9.46 0.79 -62.9 5.6 12.8 1.6 -13.4 4.5 1.9 3.2 6.16 0.65 39 28 5.8 6.2 2.5 1.6 0.47 0.25 0.01 0.00 148 97 2.47 3.41 7.32 13.07 6.60 6.73 3.90 2.75 0.30 0.17 4.43 4.22 8.23 5.77 0.38 0.21 7.90 5.96 0.24 0.15
broad-leaved forest 20 11.4 3.1 7.69 0.32 349 94 -8.89 1.02 -58.2 8.6 12.9 2.0 -12.1 3.0 3.4 3.8 6.03 1.43 58 18 12.2 9.5 2.6 2.7 0.39 0.33 0.01 0.00 234 78 3.04 2.63 4.37 3.07 6.73 4.37 2.33 2.27 0.27 0.09 4.32 3.68 9.33 6.34 0.45 0.24 17.02 23.36 0.78 1.92
mixed forest 57 9.9 2.3 7.60 0.31 344 152 -9.51 0.89 -63.6 7.4 12.5 1.9 -12.3 3.0 3.9 3.6 6.29 2.02 56 29 12.2 9.5 2.3 3.0 0.56 0.80 0.01 0.00 232 109 3.07 4.86 5.03 4.12 8.59 9.81 2.89 3.39 0.25 0.03 5.74 13.83 11.19 10.46 0.50 0.34 12.04 17.86 0.95 3.54
non-irrigated arable land 10 13.5 1.5 7.00 0.40 549 168 -8.52 0.86 -57.8 7.7 10.3 1.5 -14.5 2.8 10.5 3.2 6.93 2.08 82 25 16.2 5.0 12.6 9.3 4.87 4.69 0.01 0.00 254 106 21.16 12.04 46.09 31.53 25.94 13.46 6.32 2.87 0.25 0.00 53.05 53.10 29.30 11.29 1.33 1.35 19.10 24.14 0.63 0.76
complex cultivation patterns 18 12.4 2.1 7.45 0.24 536 158 -9.16 0.64 -62.0 4.0 11.3 2.2 -13.4 0.9 7.4 3.9 5.93 1.37 85 29 22.2 12.6 8.7 9.5 1.10 0.88 0.01 0.00 347 101 9.35 6.29 13.31 8.43 16.40 18.95 4.25 2.64 0.28 0.08 24.25 31.77 15.28 6.13 0.53 0.30 14.78 23.90 0.27 0.19
land principally occupied by agriculture, with significant areas of natural vegetation 10 11.8 2.8 7.58 0.42 492 224 -9.28 0.70 -62.7 4.3 11.5 1.6 -13.4 0.7 6.8 1.7 6.63 1.31 80 42 17.5 9.4 3.8 2.7 1.24 0.90 0.02 0.01 290 112 7.69 6.74 27.23 30.91 15.96 13.60 4.04 2.16 0.28 0.08 13.05 11.56 14.95 9.27 0.41 0.23 16.60 25.00 1.00 1.56
industrial or commercial units 2 13.5 0.4 7.45 0.03 581 35 -8.59 0.33 -60.4 0.6 8.3 3.3 -12.7 1.3 8.3 1.1 6.58 0.51 88 9 22.5 0.7 9.5 9.2 0.96 0.62 0.01 0.00 313 33 22.20 14.14 24.42 0.53 24.10 0.85 2.84 0.06 0.48 0.32 23.00 19.80 28.00 4.24 35.30 9.48 10.50 7.78 2.73 3.29

Table: Typical groundwater values according to Actual agricultural and forest land usage classification

Land use n
X S X S X EC X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S X S

forest 138 10.1 2.8 7.67 0.33 325 141 -9.33 0.97 -61.8 7.9 12.8 1.8 -11.7 4.0 3.3 3.6 6.12 1.64 54 26 11.1 9.5 2.2 2.6 0.47 0.57 0.013 0.000 217 102 2.78 3.73 4.96 5.97 7.45 7.96 2.62 2.83 0.27 0.09 4.79 9.27 9.50 8.16 0.45 0.28 12.55 18.13 0.69 2.52
areas of less intense use of nutrients and plant protection products 18 12.7 2.9 7.46 0.31 450 215 -9.13 0.88 -60.9 6.5 12.1 1.9 -13.7 1.5 7.8 0.9 5.76 1.06 74 43 18.7 12.4 8.0 9.7 1.27 1.03 0.015 0.009 295 140 6.30 4.25 12.36 14.28 19.98 20.14 4.55 2.94 0.26 0.06 25.92 31.72 13.64 6.77 0.46 0.43 23.06 31.08 0.77 1.18
areas of   intense use of nutrients and plant protection products 16 12.8 1.3 7.22 0.48 591 157 -8.70 0.44 -59.7 3.3 9.9 1.3 -14.0 2.2 9.3 4.0 7.33 1.54 88 23 19.3 5.4 10.8 7.7 3.37 4.16 0.013 0.000 294 98 20.58 8.89 44.86 28.24 20.52 12.85 5.71 2.35 0.28 0.09 38.28 45.76 27.19 9.28 0.99 1.10 11.44 13.30 0.47 0.62
urban areas 2 13.5 0.4 7.45 0.03 581 35 -8.59 0.33 -60.4 0.6 8.3 3.3 -12.7 1.3 8.3 1.1 6.58 0.51 88 9 22.5 0.7 9.5 9.2 0.96 0.62 0.013 0.000 313 33 22.20 14.14 24.42 0.53 24.10 0.85 2.84 0.06 0.48 0.32 23.00 19.80 28.00 4.24 35.30 9.48 10.50 7.78 2.73 3.29

Br (µg/L) Cr (µg/L) Fe (µg/L) Mn (µg/L)Cl- (mg/L) NO3
- (mg/L) SO4

2- (mg/L) Si (mg/L) As (µg/L) B (µg/L)Ca2+ (mg/L) Mg2+ (mg/L) Na+ (mg/L) K+ (mg/L) NH4
+ (mg/L) HCO3

- (mg/L)

Mn (µg/L)

T (°C) pH EC (µS/cm) δ 18O (‰) δ 2H (‰) d-excess (‰) δ 13C-DIC (‰) δ15Ntot (‰) 3H (TU)

Si (mg/L) As (µg/L) B (µg/L) Br (µg/L) Cr (µg/L) Fe (µg/L)K+ (mg/L) NH4
+ (mg/L) HCO3

- (mg/L) Cl- (mg/L) NO3
- (mg/L) SO4

2- (mg/L)Na+ (mg/L)T (°C) pH EC (µS/cm) δ 18O (‰) δ 2H (‰) d-excess (‰) δ 13C-DIC (‰) δ15Ntot (‰) 3H (TU) Ca2+ (mg/L) Mg2+ (mg/L)
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