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What are quantum dots?

QDs - small semiconductor structures (few nm)
Electrons are confined due to small size
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Quantum dot applications

Tunable size = tunable energy bandgap
Diode lasers

Photovoltaics

QD displays

Electronics — single electron transistors

Quantum computing
Flourescent dyes (high brightness)




Quantum dot fabrication

* Colloidal synthesis (CdSe)

* Bottom-up approach (GaAs, InAs)
— Self-assembled QDs

 Top-down approach (lithography)
— Etching of semiconductor material

— Metal gates -> electrostatically defined QD
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Self-assembled QDs

* Molecular beam epitaxy in ultra-high vacuum
— High-purity materials in effusion cells
— Ballistic transport to the substrate

— High thickness control Molecular Beams
Effusion Cells RHEE /

/ Pump

— Layer-by-layer growth
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Self-assembled QDs

 Minimization of surface energy (lattice mismatched materials)
e Balance of forces: 7vsv = vsL + yLv cos ©
 Three types of growth:

— Frank-van der Merve

Ysv 2 YSL + YLV
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Atomic force microscopy

* Part of the scanning probe microscope family

e Raster scan of the surface topography
 Tip-sample forces

electrostatic interactions
van der Waals interactions
guantum-mechanical forces

capillary forces

aftractive force



AFM operation

Bending of the cantilever due to tip-sample interaction
Laser beam detects the bending

Feedback loop adjusts the height

Modes of operation

] feedback loop Controller
— Contact (repulsive force) * | Blesvonis
— Intermittent mode
— Non-contact (attractive force) mirror l laser
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Conductive AFM

Voltage applied to the AFM tip
Simultaneous topography and conductivity measurements (fA — nA ranges)

Local conductivity - |-V curves
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Surface band modulation of InAs QDs

* Self-assembled InAs QDs
* Grown on n-doped (2x10'8cm3) GaAs substrate

* 2.3 monolayers of InAs deposited on GaAs buffer layer
 C-AFM scans of the surface
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Surface band modulation of InAs QDs

* Conductance related to local Schottky barrier b X |9
: L o : Q0L OLE,
 The wetting layer is oxidized in air, leading to EE
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Electron transport through Ge QDs

 Ge QDs fabricated by UHV ion beam sputtering
* Two types of samples

— Coherent (lattice matched growth)

— Incoherent (randomly orientated islands with interfacial defects)
e C-AFM and |-V curves

— Linear to non-linear & symmetric (coherent)

— Staircase (incoherent)

Chung et al, Appl. Phys. Lett. 89 (2006)



Electron transport through Ge QDs

Difference due to QD microstructure

Non-epitaxial growth (incoherent case) forms a disorder region which acts
as a potential barrier

Confinemet of electrons leads to discrete energy states

Increasing the bias increases the number of open channels which results in
sharp jumps in current

(a) epitaxial (b) Non-epitaxial
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(d) Disorder layer
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Chung et al, Appl. Phys. Lett. 89 (2006)



Lateral composition of Ge QDs

 Self-assembled Ge QDs on Si substrates
— Sample A: 1.7nm of Ge at 550°C
— Sample B: 0.85nm of Ge at 640°C

e Sample A
— Center more conductive than periphery
— Difference attributed to modifications of the
Schottky barrier
 SampleB
— Periphery more conductive

— Shape and size is similar -> the difference can
not be attributed to different local lowering of
the Schottky barrier

— Hypothesis: different diffusion levels of Si into
the Ge QDs

Xue et al, Surf. Sci. 592 (2005)
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Lateral composition of Ge QDs

* Intermixing of Si with Ge at T > 550°C
e Conductivity of Ge higher than that of Si
* If Siis alloyed into Ge, edges have lower resistance (R, > R;)

* Selective etching of samples A and B
— 30% H,0, etches away GeSi where Ge > 65%
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C-AFM of quantum rings

* Quantum ring fabrication

— Capping InAs QDs with 2nm GaAs at
490°C + 30s annealing

 C-AFM of current and topography
— Lower conductivity of central QR hole
— XPEEM, XSTM show In rich core
— Inrich regions should be more conducting
— Surface oxide needs to be considered

Mlakar et al, Appl. Phys. Lett. 92 (2008)
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C-AFM of quantum rings

Regions of lowest conductivity are assumed
to be completely oxidized

Geometrical analysis yields an oxide cnide
thickness of about 1nm

Samples were further investigated by f‘ /}
measuring |-V curves on QR rim and central - \/ Gas
hole ‘0]

Results were compared to a theoretical
model
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C-AFM of quantum rings

Modelling the I-V curves

— Energy band diagram (Poisson-
Schroedinger solver)

— TMM for calculating the
transmission coefficient

— 1D approximation of current
density (Tsu-Esaki formalism)

When taking surface oxide is taken
into account, we find good
gualitative agreement between
theory and measurements

Mlakar et al, Appl. Phys. Lett. 92 (2008)
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Summary

 C-AFM studies of basic QD properties (size, shape,
composition, energy levels, transport ... )

* Performance of QD based transport and optoelectronic
devices is determined by shape, size and microstructure

* C-AFM characterization of QDs provides input for the
optimization of QD fabrication -> optimization of key
properties



