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• Hexagonal arrangement of carbon atoms 
forming an  atom thick planar sheets

• C-C bond ~ 1.42 Å
• Thickness of one 1 atomic layer ~ .34nm

(~ layer spacing of graphite) 

• Strong
• Flexible
• High intrinsic carrier mobility 

~ 200000 cm2 /Vs
• High thermal conductivity

Introduction to Graphene

Graphene

Graphite

Carbon nanotubes Fullerene



Late discovery of Graphene

• Graphene monolayer in great 
minority among thicker flakes

• Unlike nanotubes, no clear 
signature by TEM

• Completely transparent on most of 
substrates

• The only method: AFM
very low throughput at high 
resolution
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• Discovered in 2004



The Nobel Prize in Physics 2010

“ Graphene”

Andre Geim Konstantin Novoselov
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Fabrication Methods: Mechanical exfoliation

Advantages:
Cheap        

Limitations:
Limited to small area
Many uneven films
Time consuming



Advantages:
Great technique for large area graphene
Requires less labor
Continuous films

Limitation: 
Require high temperature

Chemical vapor deposition (CVD) method



The spectrum is described by the tight-binding 
Hamiltonian on a hexagonal lattice

• Band crossing at K and K’ (Dirac points)
• Dispersion is similar to that of

relativistic particles, E = hv F k

• Fermi velocity vF = 106 m /s 

• Zero band gap semiconductor
• Charge carriers ~ massless

Dirac Fermions

Band Structure of graphene



• Graphene absorbs πα ≈ 2.3% of
white light, where α = fine structure constant

• Transmission, T = 1- πα , Reflection, R<<1

Absorption of light by 2D Dirac fermions

Optical properties of graphene



Possible applications of graphene
• TCO (Transparent conducting electrode) 

Alternative to ITO ( expensive,  
difficult to recycle)

Electrode very thin (couple of nm thick)

Compatible with large scale manufacturing 
methods

• Can be used to polarize light

• Saturable absorber

Graphene Transister



Characterization of graphene

AFM (Atomic Force Microscope)

The force acting on the cantilever,
F = -kz

k = spring constant of cantilever
z = deflection of cantilever

• Used to characterize the surfaces on nanometer scale

Fig. Scheme illustrating the working of AFM 



Operating modes

Contact mode Non-contact mode
• S ~ few nm  
• F ~ 10-8 to 10-6 N
• High resolution

• S ~ 10 nm
• F ~  10-12 N
• Suitable for soft samples

Operating modes 

S = distance between tip and surface
F = force between tip and surface 



AFM measurement across a wrinkle 
confirming interlayer spacing of ~0.35 nm.

~0.35 nm

AFM image of graphene
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Growth of OS on graphene
• Low cost, mechanically flexible, easy to fabricate
• Aspects of interface

Organic Solar cell, OLEDs, OTFTs

• Pentacene-based organic thin film
transistors (OTFTs) reached charge 
carrier mobility of the order of 1 
cm2/Vs

OTFT

• Graphene can be used as a substrate



• Crystal structure - Triclinic
• Band gap - 2.2eV
• High carrier mobility
• Excellent interface properties with organic 

materials
• Form highly ordered organic films

Structural formula of Pentacene

Pentacene



Organic Molecular Beam Deposition
• The growth is controlled with the precision of a single molecular layer 

• Generation of the molecular beam
• Mixing zone
• Growth on substrate

Sticking coefficient, 
s = N adh/ Ntot
N adh = no. of atoms adhering to 

substrate
N tot = no. of atoms arriving

Fig. Organic Molecular Beam Setup
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Practically, s <1

A series of process occur
1) Adsorption of atoms or molecules 

impinging on substrate surface
a) Physical adsorption- no electron         
transfer
b) Chemical adsorption-electron 
transfer

2) Surface migration and dissociation of 
adsorbed molecules

3) Incorporation of constituent atoms   
into crystal lattice 

4) Desorption
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Structure of organic films grown depends upon 

• Type of molecule/substrate interaction

Layer-by-layer (Frank van der Merwe) growth mode
if molecule/substrate interaction > intermolecular interaction

Layer-plus-island (Stranski- Krastanov)- intermediate mode
layer growth unfavorable after first few layers 

Islands (Volmer- Weber growth mode)
if intermolecular interaction > molecule/substrate

• Substrate temperature
• Density of surface defects
• Surface energy



J. A. Venables et. al, Rep. Prog. Phys 47, 399 (1984)



Density of islands depends upon

• Deposition rate
• Substrate temperature and described as power law

p = critical exponent, KB = Boltzmann constant

Enucl = activation energy for homogenous nucleation

a)  Surface diffusion (Ed)
b)  Desorption from substrate surface (Ea)
c)  Formation of island of critical size i with binding energy Ei



Specific issues to organic thin film growth
• Internal degrees of freedom

Orientational degrees of freedom-
orientation domain
Vibrational degrees of freedom-impact 
on interaction with surface

• Interaction potential
(Molecule-molecule and molecule-
substrate)
Strongly interacting surface-limited 
diffusion

• Size of the molecules
Multiple domains-disorder



Experimental details:

• Si wafer with 200nm thick SiO2
layer( roughness < 0.1nm)

• Pentacene evaporated from fused 
quartz crucible

• Film thickness, 0.5nm
• Base pressure ~ 10-7 mbar
• Substrate temperature, Ts ~ 338K
• Deposition rate ~ 0.45nm/min

Pentacene on SiO2

S. Pratontep et.al, PRB 689,165201(2004)

Example 1:



Effect of deposition rate
• Morphology of island becomes 
compact

• No. density of island increases

Effect of Ts
• Density N decreases by a few 
orders of magnitude as Ts increased
from 29°C to 80°C

S. Pratontep et.al, PRB 689,165201(2004)

Conclusion: Nucleation density of islands can be tuned by both deposition rate 
and substrate temperature



Example 2: AFM images of Pentacene (0.2 ML) thick on different substrates



Pentacene on different substrates



Transition from 2D to 3D- island growth

Conclusion:  Pentacene growth on polymers is correlated
critical island size for substrates b/w 25-70 ° C is 3<i<4
Condensation is complete although reevaporation plays  some role

Film thickness ~ 33 ML
Ts = 25 ° C 

B. Stadlober et. al PRB B 74, 165302 (2006)



Optical microscope images of Graphene

Graphene prepared by exfoliation

Graphene prepared by CVD method
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a) Untreated graphene films
b) Thermally treated graphene

films

W. H. Lee et. al., J. Am. Chem. Soc., 133, 4447 (07 March 2011) 

Pentacene on Graphene

• SiO2 layer on Si wafer ~ 300 nm
• Pentacene deposition rate ~ 0.2 Å/ s

AFM images of pentacene films on graphene



Conclusions

• Graphene is an excellent 2D structure with unusual electronic and optical 
properties 

• Organic semiconductors ( OS) on substrates can be successfully grown in 
sub monolayer or more monolayer by OMBD

• AFM is an important tool to study initial stages of growth of organic 
semiconductor on substrates

• Graphene prepared by CVD and mechanical exfoliation methods can be 
used as a substrate


