



# Modeling of dendritic growth – are there alternatives to the phase field method?

Markus Rettenmayr, Klemens Reuther Friedrich Schiller University Jena Otto Schott Institute of Materials Reserach Chair of Metallic Materials





Nova Gorica, 27.3.2014







#### acknowledgements

H. Lauterbach Dr. R. Sumathi Dr. Roschen Sasikumar Prof. Bozidar Sarler Prof. Michel Rappaz Prof. Hans Eckart Exner † Prof. Martin Glicksman





#### solidification microstructures





Al-Fe-Si

Fe-Ni









10<sup>14</sup> dendrites in castings solidify worldwide per second

size: micrometers to meters

growth in crystallographic direction

→ cubic lattice: 4-fold symmetry



experimental observation: dendrite tip = paraboloid of revolution

first analytical model



'hemispherical needle '







#### facts about dendritic solidification



#### diffusion at a dendrite tip







analytical solution 1940ies:"Ivantsov transport solution"(parabolic coordinate system)

influence of interfacial energy not included

- $\rightarrow$  tip shape not realistic
- $\rightarrow$  secondary arms not at all included





solves diffusion equation in the vicinity of a moving boundary

describes complex morphologies

includes interface energy and its anisotropy



J. Warren, W.Boettinger



René Magritte



A. Karma, M. Rappaz









## physical interface thickness only in 1D (otherwise simulation too slow)

 $\rightarrow$  thicker interface, "anti-trapping current"

#### weak grid anisotropy remains

 $\rightarrow$  empirical corrections, choice of grid

#### high computational cost

 $\rightarrow$  avoid slow (technical) processes

interface energy anisotropy considered,
 but not in agreement with experiments
 → attack experimentalists



#### alternate method: Cellular Automata







*von Neumann* or *Moore* neighborhoods **very very** strong grid anisotropy





hybrid neighborhoods ?  $\rightarrow$  work of A. Lorbiecka, B. Sarler



#### Cellular Automata – state of the art





CA dendrite, K. Reuther, M. Rettenmayr, Comp. Mater. Sci. 2012



#### growth in off-grid direction









grid with mesh size of  $\approx 1 \mu m$ 

growth in **any** direction with respect to the grid<sup>\*</sup>

arm surfaces along different grid directions  $\rightarrow$  direction dependent branching behavior

<sup>\*</sup>... to be honest  $\rightarrow$ 

11



#### growth in off-grid direction





growth in **any** off-grid direction only for short distances (but better in 3D)

#### $\rightarrow$ conclusion on CA:

fast (1% of CPU of Phase Field) grid anisotropy reduced, but essentially unavoidable secondary arms mostly unrealistic

#### conclusion on phase field:

large community far developed precise slow low (but non-zero) grid anisotropy

 $\rightarrow$  new attempt: meshless method





"a computer algorithm is most benign on regular or almost regular grids" (experienced modeller)

#### commonly used method:

start with regular grid displace each node by small amount

→ retains neighborhoods from cartesian grid
→ retains bookkeeping

#### known problems:

numerical instabilities local divergence



(Perko, CMES 2007)





#### random positioning of nodes

**minimum distance**  $\Delta d$  between every node for improved homogeneity

→ no preferred direction, isotropic at length scales  $>\Delta d$ 





(Reuther, Sarler, Rettenmayr 2012, IJTS)





point based solver of partial differential equations

"Point Automata"

example: diffusion equation

interpolation of the concentration field by a **distance weighted least squares fit** within radius *R* 

Taylor series of 2<sup>nd</sup> degree:

$$c(x, y) = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 y^2 + a_5 x y$$
$$\nabla^2 c = 2(a_3 + a_4)$$





e.g. Neumann boundary conditions

$$c(x, y) = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 y^2 + a_5 xy$$
$$\frac{\partial c}{\partial n} = n_x (a_1 + y a_5) + n_y (a_2 + x a_5) \equiv q$$

find *c* such that the coefficients from the least squares fit satisfy the boundary condition

tangential flow not treated explicitely at boundary



$$c(x,y) = a_0 + \frac{a_1(n_y x - n_x y)}{a_1(n_y x - n_x y)} + \frac{q(n_x x + n_y y)}{a_3 x^2 + a_4 y^2} + \frac{a_5 xy}{a_5 xy}$$

normal term: given from boundary condition tangential term: included in the fit





- grid node ■:
   solid or liquid
- interface : "particles" between nodes with different state



Reuther, Rettenmayr, Acta Mater 2013



"particles" on a fixed, regular grid:

 $\rightarrow$  interpolation/extrapolation scheme outside finite difference method

particles on an irregular grid

 $\rightarrow$  interpolation scheme is inherent to point based meshless method









particle movement in point automata:

introduction of "free" particles requires special attention for the node bookkeeping



- → particle-node coupling trapping:
  - new particles introduced old particle deleted









least square fit

in the cartesian coordinate system





$$\Delta T = \Gamma(\theta) \cdot K$$

local undercooling dependent on interface geometry:

curvature (K) angle ( $\theta$ ) to normal direction





interface **velocity** defined by mass balance





Reuther and Rettenmayr, Acta Mater. 2013







#### interface migration **direction** defined by translation of the fit



Reuther and Rettenmayr, Acta Mater. 2013



#### steady state solidification, concentration profile in the liquid



Acta Mater. 2013



#### steady state solidification, initial and final transients



Acta Mater. 2013



#### first results - 2D problem

### inward solidification in a square mold



26



#### comparison with literature data





27



#### comparison with literature data







#### dendritic solidification









## simulation of complex morphologies with Cellular Automata

- fast ( $\rightarrow$  100times faster than Phase Field)
- similarities with real growth morphologogies undeniable

simulation of complex morphologies with Point Automata

- not very slow ( $\rightarrow$  10 times faster than Phase Field)
- excellent reproduction of growth morphologogies

simulation of complex morphologies with Phase Field

- far developed
- slow ( $\rightarrow$  not faster than Phase Field)
- very good reproduction of growth morphologogies