
Modeling of dendritic growth – !
are there alternatives to the phase field method?!

Markus Rettenmayr, Klemens Reuther!
Friedrich Schiller University Jena!

Otto Schott Institute of Materials Reserach!
Chair of Metallic Materials!

Nova Gorica, 27.3.2014!



Metallic Materials – research fields!

microstructure evolution!
thermodynamics/kinetics!
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alloy development!
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solidification microstructures!

Cd-Cu-Ag!

Al-Fe-Si!
Fe-Ni!

SCN!

!

Ag-Bi!
Pb-Sn-Ag-Cu!

4!



facts about dendritic solidification !

1014 dendrites in castings solidify worldwide per second!

experimental observation: dendrite tip = paraboloid of revolution!

size: micrometers to meters!

‘hemispherical needle‘!

first analytical model!

growth in crystallographic direction!
    ! cubic lattice: 4-fold symmetry!
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facts about dendritic solidification!

analytical solution 1940ies: !
”Ivantsov transport solution“!
(parabolic coordinate system)!
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influence of interfacial energy not included!
à  tip shape not realistic!
à secondary arms not at all included!

diffusion at a dendrite tip!
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State of the art: phase field models!

solves diffusion equation in the vicinity of a moving boundary!

describes complex morphologies!

includes interface energy and its anisotropy!

J. Warren, W.Boettinger A. Karma, M. Rappaz 

René Magritte 
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phase field dendrites, solved problems!

high computational cost!

physical interface thickness only in 1D 
(otherwise simulation too slow)!

weak grid anisotropy remains!

interface energy anisotropy considered,!
    but not in agreement with experiments!

à thicker interface, ”anti-trapping current“!

à empirical corrections, choice of grid!

à avoid slow (technical) processes!

à attack experimentalists!
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alternate method: Cellular Automata!

von Neumann or Moore neighborhoods!
very very strong grid anisotropy!

hybrid neighborhoods ? à work of A. Lorbiecka, B. Sarler!
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Cellular Automata – state of the art!

- level set method for interface position!
- sophisticated curvature treatment!

CA dendrite, K. Reuther, M. Rettenmayr, Comp. Mater. Sci. 2012!
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growth in off-grid direction!

grid with mesh size of ≈1µm!
!
growth in any direction with respect to 
the grid*!

!
arm surfaces along different grid directions!
à direction dependent branching behavior!

*... to be honest à !
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growth in off-grid direction!

! conclusion on CA:!
    fast (1% of CPU of Phase Field) !
    grid anisotropy reduced,  
         but essentially unavoidable!
    secondary arms mostly unrealistic!
conclusion on phase field:!
    large community!
    far developed!
    precise!
    slow !
    low (but non-zero) grid anisotropy!

growth in any off-grid direction !
only for short distances!
(but better in 3D)!

à new attempt:  meshless method!
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irregular grids in the literature!

”a computer algorithm is most benign on regular or almost regular grids“!

(Perko, CMES 2007) 

commonly used method:!
start with regular grid!
displace each node by small amount!
!
à retains neighborhoods from cartesian grid!
à retains bookkeeping!
!
known problems: !
numerical instabilities!
local divergence!
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requirement for zero grid anisotropy: isotropic grid!

random positioning of nodes!

minimum distance Δd between every 
node for improved homogeneity!

è  no preferred direction, isotropic at 
length scales >Δd!

(Reuther, Sarler, Rettenmayr 2012, IJTS)!
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diffuse approximation method (”DAM“)!

point based solver of partial differential equations!

”Point Automata“!

interpolation of the concentration field 
by a distance weighted least 
squares fit within radius R"
!
Taylor series of 2nd degree:!
"

example: diffusion equation !

c(x, y) = a0 + a1x + a2y+ a3x
2 + a4y

2 + a5xy

∇2c = 2(a3 + a4 )
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diffuse approximation method: boundary conditions!

e.g. Neumann boundary conditions!

∂c
∂n

= nx (a1 + ya5 )+ ny (a2 + xa5 ) ≡ q

find c such that the coefficients from the least 
squares fit satisfy the boundary condition!
!
tangential flow not treated explicitely at boundary!

c(x, y) = a0 + a1x + a2y+ a3x
2 + a4y

2 + a5xy

c(x, y) = a0 + a
'
1(nyx − nxy)+ q(nxx + nyy)+ a3x

2 + a4y
2 + a5xy

normal term: given from boundary condition!
tangential term: included in the fit!

16!



major problem: position of interface!

Ag49-Bi51!

•  grid node n:  
solid or liquid!

•  interface l :  
”particles” between nodes  
with different state!

Reuther, Rettenmayr, Acta Mater 2013 
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front tracking with particles!

”particles“ on a fixed, regular grid:!
!
!
à interpolation/extrapolation scheme 
outside finite difference method!
!
!
particles on an irregular grid!
!
à interpolation scheme is inherent  
to point based meshless method!
!
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front tracking with particles!

particle movement in point automata: !
!
introduction of ”free“ particles requires 
special attention for the node 
bookkeeping!
!
à particle-node coupling!
    trapping:!
       new particles introduced!
       old particle deleted!
!

! 
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interface normal!

total least square fit!

n =
1
a
!
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Σyy −Σxx ± Σyy −Σxx( )

2
+ 4Σxy

2 / Σxy

with!

Σxy = wi
i
∑ xiyi

etc.!
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interface shape and curvature!

least square fit !
in the cartesian coordinate system!

( ) KT ⋅Γ=Δ θ
local undercooling dependent on 
interface geometry:  
  curvature (K) 
  angle (θ) to normal direction!
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interface migration!

interface velocity !
defined by mass balance!

v ⋅ cl
* − cs

*( ) =

Dl
∂cl
∂
nl→s

+Ds
∂cs
∂
nl→s

Reuther and Rettenmayr, Acta Mater. 2013!
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interface migration!

interface migration direction!
defined by translation of the fit!

Reuther and Rettenmayr, Acta Mater. 2013!
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first results – comparison with analytical model!

C0 = 2% 
k = 0,14 

Acta Mater. 2013!

steady state solidification, concentration profile in the liquid!
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first results – comparison with analytical model!

Acta Mater. 2013!

steady state solidification, initial and final transients!
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first results - 2D problem!

inward solidification in a square mold!
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comparison with literature data!
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comparison with literature data!
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dendritic solidification!
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conclusion!

simulation of complex morphologies with Cellular Automata!

simulation of complex morphologies with Point Automata!

-  fast (à 100times faster than Phase Field)!
-  similarities with real growth morphologogies undeniable!

- not very slow (à 10 times faster than Phase Field)!
- excellent reproduction of growth morphologogies!

simulation of complex morphologies with Phase Field!
- far developed!
- slow (à not faster than Phase Field)!
- very good reproduction of growth morphologogies!


